Library demo
Preamble
Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq div choice fintype.
Small Scale Reflection version 1.4 loaded.
Copyright 2005-2012 Microsoft Corporation and INRIA.
Distributed under the terms of the CeCILL-B license.

[Loading ML file ssreflect.cmxs ... done]
[Loading ML file z_syntax_plugin.cmxs ... done]
[Loading ML file quote_plugin.cmxs ... done]
[Loading ML file newring_plugin.cmxs ... done]
Warning: Overwriting previous delimiting key bool in scope bool_scope
Warning: No global reference exists for projection value
 fun x : pred _UNBOUND_REL_1 => x in instance predPredType of topred, ignoring it.
Warning: No global reference exists for projection value
 fun x : _UNBOUND_REL_1 -> bool => x in instance boolfunPredType of topred, ignoring it.
Warning: Overwriting previous delimiting key nat in scope nat_scope
Warning: Notation _ + _ was already used in scope nat_scope
Warning: Notation _ - _ was already used in scope nat_scope
Warning: Notation _ <= _ was already used in scope nat_scope
Warning: Notation _ < _ was already used in scope nat_scope
Warning: Notation _ >= _ was already used in scope nat_scope
Warning: Notation _ > _ was already used in scope nat_scope
Warning: Notation _ <= _ <= _ was already used in scope nat_scope
Warning: Notation _ < _ <= _ was already used in scope nat_scope
Warning: Notation _ <= _ < _ was already used in scope nat_scope
Warning: Notation _ < _ < _ was already used in scope nat_scope
Warning: Notation _ * _ was already used in scope nat_scope
Warning: No global reference exists for projection value
 fun (x : BinNums.N) (_ : xpredT x) => {| bin_of_number := x |} in instance number_subType of Sub, ignoring it.
Warning: Ignoring canonical projection to list by pred_sort in mem_seq_predType: redundant with seq_predType
Warning: Ignoring canonical projection to pred_of_eq_seq by topred in bitseq_predType: redundant with seq_predType
Ambiguous paths:
[pred_of_mem_pred; sort_of_simpl_pred] : mem_pred >-> pred_sort
Ambiguous paths:
[Equality.sort; sort_of_predArgType] : Equality.type >-> Sortclass
Ambiguous paths:
[Choice.eqType; Equality.sort] : Choice.type >-> Sortclass
Ambiguous paths:
[Countable.eqType; Equality.sort] : Countable.type >-> Sortclass
Ambiguous paths:
[Countable.choiceType; Choice.eqType] : Countable.type >-> Equality.type
[Countable.choiceType; Choice.eqType; Equality.sort] : Countable.type >-> predArgType
[Countable.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 sort_of_simpl_pred] : Countable.type >-> pred_sort
[Countable.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 collective_pred_of_simpl] : Countable.type >-> collective_pred
[Countable.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 applicative_pred_of_simpl] : Countable.type >-> applicative_pred
[Countable.choiceType; Choice.eqType; Equality.sort; pred_of_argType] : Countable.type >-> simpl_pred
[Countable.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl] : Countable.type >-> pred
[Countable.choiceType; Choice.sort] : Countable.type >-> Sortclass
[Countable.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl; fun_of_pred] : Countable.type >-> Funclass
Ambiguous paths:
[sub_countType; Countable.sort] : subCountType >-> Sortclass
Ambiguous paths:
[Finite.base2; Countable.mixin] : Finite.class_of >-> Countable.mixin_of
[Finite.base2; Countable.base; Choice.base] : Finite.class_of >-> Equality.mixin_of
[Finite.base2; Countable.base] : Finite.class_of >-> Choice.class_of
Ambiguous paths:
[Finite.eqType; Equality.sort] : Finite.type >-> Sortclass
Ambiguous paths:
[Finite.choiceType; Choice.eqType] : Finite.type >-> Equality.type
[Finite.choiceType; Choice.eqType; Equality.sort] : Finite.type >-> predArgType
[Finite.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 sort_of_simpl_pred] : Finite.type >-> pred_sort
[Finite.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 collective_pred_of_simpl] : Finite.type >-> collective_pred
[Finite.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 applicative_pred_of_simpl] : Finite.type >-> applicative_pred
[Finite.choiceType; Choice.eqType; Equality.sort; pred_of_argType] : Finite.type >-> simpl_pred
[Finite.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl] : Finite.type >-> pred
[Finite.choiceType; Choice.sort] : Finite.type >-> Sortclass
[Finite.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl; fun_of_pred] : Finite.type >-> Funclass
Ambiguous paths:
[Finite.countType; Countable.choiceType] : Finite.type >-> Choice.type
[Finite.countType; Countable.eqType] : Finite.type >-> Equality.type
[Finite.countType; Countable.eqType; Equality.sort] : Finite.type >-> predArgType
[Finite.countType; Countable.eqType; Equality.sort; pred_of_argType;
 sort_of_simpl_pred] : Finite.type >-> pred_sort
[Finite.countType; Countable.eqType; Equality.sort; pred_of_argType;
 collective_pred_of_simpl] : Finite.type >-> collective_pred
[Finite.countType; Countable.eqType; Equality.sort; pred_of_argType;
 applicative_pred_of_simpl] : Finite.type >-> applicative_pred
[Finite.countType; Countable.eqType; Equality.sort; pred_of_argType] : Finite.type >-> simpl_pred
[Finite.countType; Countable.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl] : Finite.type >-> pred
[Finite.countType; Countable.sort] : Finite.type >-> Sortclass
[Finite.countType; Countable.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl; fun_of_pred] : Finite.type >-> Funclass
Ambiguous paths:
[subFinType_subCountType; subCount_sort] : subFinType >-> subType
[subFinType_subCountType; subCount_sort; sub_sort] : subFinType >-> Sortclass
Ambiguous paths:
[subFinType_finType; Finite.countType] : subFinType >-> Countable.type
[subFinType_finType; Finite.choiceType] : subFinType >-> Choice.type
[subFinType_finType; Finite.eqType] : subFinType >-> Equality.type
[subFinType_finType; Finite.eqType; Equality.sort] : subFinType >-> predArgType
[subFinType_finType; Finite.eqType; Equality.sort; pred_of_argType;
 sort_of_simpl_pred] : subFinType >-> pred_sort
[subFinType_finType; Finite.eqType; Equality.sort; pred_of_argType;
 collective_pred_of_simpl] : subFinType >-> collective_pred
[subFinType_finType; Finite.eqType; Equality.sort; pred_of_argType;
 applicative_pred_of_simpl] : subFinType >-> applicative_pred
[subFinType_finType; Finite.eqType; Equality.sort; pred_of_argType] : subFinType >-> simpl_pred
[subFinType_finType; Finite.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl] : subFinType >-> pred
[subFinType_finType; Finite.sort] : subFinType >-> Sortclass
[subFinType_finType; Finite.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl; fun_of_pred] : subFinType >-> Funclass


Require Import finfun bigop prime binomial ssralg finset fingroup finalg.
Warning: No global reference exists for projection value
 fun (x : tuple.tuple_of #|_UNBOUND_REL_2| _UNBOUND_REL_1) (_ : xpredT x) =>
 Finfun x in instance finfun_subType of Sub, ignoring it.
Warning: No global reference exists for projection value
 fun (x : tuple.tuple_of #|_UNBOUND_REL_2| _UNBOUND_REL_1) (_ : xpredT x) =>
 Finfun x in instance finfun_of_subType of Sub, ignoring it.
Warning: Ignoring canonical projection to fgraph by val in finfun_of_subType: redundant with finfun_subType
Warning: Ignoring canonical projection to finfun_of by Equality.sort in exp_eqType: redundant with finfun_of_eqType
Warning: Ignoring canonical projection to finfun_of by Choice.sort in exp_choiceType: redundant with finfun_of_choiceType
Warning: Ignoring canonical projection to finfun_of by Finite.sort in exp_finType: redundant with finfun_of_finType
Warning: Ignoring canonical projection to pred_of_simpl by topred in nat_pred_pred: redundant with simplPredType
Ambiguous paths:
[GRing.Zmodule.eqType; Equality.sort] : GRing.Zmodule.type >-> Sortclass
Ambiguous paths:
[GRing.Zmodule.choiceType; Choice.eqType] : GRing.Zmodule.type >-> Equality.type
[GRing.Zmodule.choiceType; Choice.eqType; Equality.sort] : GRing.Zmodule.type >-> predArgType
[GRing.Zmodule.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 sort_of_simpl_pred] : GRing.Zmodule.type >-> pred_sort
[GRing.Zmodule.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 collective_pred_of_simpl] : GRing.Zmodule.type >-> collective_pred
[GRing.Zmodule.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 applicative_pred_of_simpl] : GRing.Zmodule.type >-> applicative_pred
[GRing.Zmodule.choiceType; Choice.eqType; Equality.sort; pred_of_argType] : GRing.Zmodule.type >-> simpl_pred
[GRing.Zmodule.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl] : GRing.Zmodule.type >-> pred
[GRing.Zmodule.choiceType; Choice.sort] : GRing.Zmodule.type >-> Sortclass
[GRing.Zmodule.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl; fun_of_pred] : GRing.Zmodule.type >-> Funclass
Ambiguous paths:
[GRing.Ring.eqType; Equality.sort] : GRing.Ring.type >-> Sortclass
Ambiguous paths:
[GRing.Ring.choiceType; Choice.eqType] : GRing.Ring.type >-> Equality.type
[GRing.Ring.choiceType; Choice.eqType; Equality.sort] : GRing.Ring.type >-> predArgType
[GRing.Ring.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 sort_of_simpl_pred] : GRing.Ring.type >-> pred_sort
[GRing.Ring.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 collective_pred_of_simpl] : GRing.Ring.type >-> collective_pred
[GRing.Ring.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 applicative_pred_of_simpl] : GRing.Ring.type >-> applicative_pred
[GRing.Ring.choiceType; Choice.eqType; Equality.sort; pred_of_argType] : GRing.Ring.type >-> simpl_pred
[GRing.Ring.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl] : GRing.Ring.type >-> pred
[GRing.Ring.choiceType; Choice.sort] : GRing.Ring.type >-> Sortclass
[GRing.Ring.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl; fun_of_pred] : GRing.Ring.type >-> Funclass
Ambiguous paths:
[GRing.Ring.zmodType; GRing.Zmodule.choiceType] : GRing.Ring.type >-> Choice.type
[GRing.Ring.zmodType; GRing.Zmodule.eqType] : GRing.Ring.type >-> Equality.type
[GRing.Ring.zmodType; GRing.Zmodule.eqType; Equality.sort] : GRing.Ring.type >-> predArgType
[GRing.Ring.zmodType; GRing.Zmodule.eqType; Equality.sort; pred_of_argType;
 sort_of_simpl_pred] : GRing.Ring.type >-> pred_sort
[GRing.Ring.zmodType; GRing.Zmodule.eqType; Equality.sort; pred_of_argType;
 collective_pred_of_simpl] : GRing.Ring.type >-> collective_pred
[GRing.Ring.zmodType; GRing.Zmodule.eqType; Equality.sort; pred_of_argType;
 applicative_pred_of_simpl] : GRing.Ring.type >-> applicative_pred
[GRing.Ring.zmodType; GRing.Zmodule.eqType; Equality.sort; pred_of_argType] : GRing.Ring.type >-> simpl_pred
[GRing.Ring.zmodType; GRing.Zmodule.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl] : GRing.Ring.type >-> pred
[GRing.Ring.zmodType; GRing.Zmodule.sort] : GRing.Ring.type >-> Sortclass
[GRing.Ring.zmodType; GRing.Zmodule.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl; fun_of_pred] : GRing.Ring.type >-> Funclass
Ambiguous paths:
[GRing.Lmodule.eqType; Equality.sort] : GRing.Lmodule.type >-> Sortclass
Ambiguous paths:
[GRing.Lmodule.choiceType; Choice.eqType] : GRing.Lmodule.type >-> Equality.type
[GRing.Lmodule.choiceType; Choice.eqType; Equality.sort] : GRing.Lmodule.type >-> predArgType
[GRing.Lmodule.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 sort_of_simpl_pred] : GRing.Lmodule.type >-> pred_sort
[GRing.Lmodule.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 collective_pred_of_simpl] : GRing.Lmodule.type >-> collective_pred
[GRing.Lmodule.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 applicative_pred_of_simpl] : GRing.Lmodule.type >-> applicative_pred
[GRing.Lmodule.choiceType; Choice.eqType; Equality.sort; pred_of_argType] : GRing.Lmodule.type >-> simpl_pred
[GRing.Lmodule.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl] : GRing.Lmodule.type >-> pred
[GRing.Lmodule.choiceType; Choice.sort] : GRing.Lmodule.type >-> Sortclass
[GRing.Lmodule.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl; fun_of_pred] : GRing.Lmodule.type >-> Funclass
Ambiguous paths:
[GRing.Lmodule.zmodType; GRing.Zmodule.choiceType] : GRing.Lmodule.type >-> Choice.type
[GRing.Lmodule.zmodType; GRing.Zmodule.eqType] : GRing.Lmodule.type >-> Equality.type
[GRing.Lmodule.zmodType; GRing.Zmodule.eqType; Equality.sort] : GRing.Lmodule.type >-> predArgType
[GRing.Lmodule.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : GRing.Lmodule.type >-> pred_sort
[GRing.Lmodule.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : GRing.Lmodule.type >-> collective_pred
[GRing.Lmodule.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : GRing.Lmodule.type >-> applicative_pred
[GRing.Lmodule.zmodType; GRing.Zmodule.eqType; Equality.sort; pred_of_argType] : GRing.Lmodule.type >-> simpl_pred
[GRing.Lmodule.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : GRing.Lmodule.type >-> pred
[GRing.Lmodule.zmodType; GRing.Zmodule.sort] : GRing.Lmodule.type >-> Sortclass
[GRing.Lmodule.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : GRing.Lmodule.type >-> Funclass
Ambiguous paths:
[GRing.Lalgebra.base2; GRing.Lmodule.base; GRing.Zmodule.mixin] : GRing.Lalgebra.class_of >-> GRing.Zmodule.mixin_of
[GRing.Lalgebra.base2; GRing.Lmodule.base] : GRing.Lalgebra.class_of >-> GRing.Zmodule.class_of
[GRing.Lalgebra.base2; GRing.Lmodule.base; GRing.Zmodule.base; Choice.base] : GRing.Lalgebra.class_of >-> Equality.mixin_of
[GRing.Lalgebra.base2; GRing.Lmodule.base; GRing.Zmodule.base] : GRing.Lalgebra.class_of >-> Choice.class_of
Ambiguous paths:
[GRing.Lalgebra.eqType; Equality.sort] : GRing.Lalgebra.type >-> Sortclass
Ambiguous paths:
[GRing.Lalgebra.choiceType; Choice.eqType] : GRing.Lalgebra.type >-> Equality.type
[GRing.Lalgebra.choiceType; Choice.eqType; Equality.sort] : GRing.Lalgebra.type >-> predArgType
[GRing.Lalgebra.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 sort_of_simpl_pred] : GRing.Lalgebra.type >-> pred_sort
[GRing.Lalgebra.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 collective_pred_of_simpl] : GRing.Lalgebra.type >-> collective_pred
[GRing.Lalgebra.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 applicative_pred_of_simpl] : GRing.Lalgebra.type >-> applicative_pred
[GRing.Lalgebra.choiceType; Choice.eqType; Equality.sort; pred_of_argType] : GRing.Lalgebra.type >-> simpl_pred
[GRing.Lalgebra.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl] : GRing.Lalgebra.type >-> pred
[GRing.Lalgebra.choiceType; Choice.sort] : GRing.Lalgebra.type >-> Sortclass
[GRing.Lalgebra.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl; fun_of_pred] : GRing.Lalgebra.type >-> Funclass
Ambiguous paths:
[GRing.Lalgebra.zmodType; GRing.Zmodule.choiceType] : GRing.Lalgebra.type >-> Choice.type
[GRing.Lalgebra.zmodType; GRing.Zmodule.eqType] : GRing.Lalgebra.type >-> Equality.type
[GRing.Lalgebra.zmodType; GRing.Zmodule.eqType; Equality.sort] : GRing.Lalgebra.type >-> predArgType
[GRing.Lalgebra.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : GRing.Lalgebra.type >-> pred_sort
[GRing.Lalgebra.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : GRing.Lalgebra.type >-> collective_pred
[GRing.Lalgebra.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : GRing.Lalgebra.type >-> applicative_pred
[GRing.Lalgebra.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType] : GRing.Lalgebra.type >-> simpl_pred
[GRing.Lalgebra.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : GRing.Lalgebra.type >-> pred
[GRing.Lalgebra.zmodType; GRing.Zmodule.sort] : GRing.Lalgebra.type >-> Sortclass
[GRing.Lalgebra.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : GRing.Lalgebra.type >-> Funclass
Ambiguous paths:
[GRing.Lalgebra.ringType; GRing.Ring.zmodType] : GRing.Lalgebra.type >-> GRing.Zmodule.type
[GRing.Lalgebra.ringType; GRing.Ring.choiceType] : GRing.Lalgebra.type >-> Choice.type
[GRing.Lalgebra.ringType; GRing.Ring.eqType] : GRing.Lalgebra.type >-> Equality.type
[GRing.Lalgebra.ringType; GRing.Ring.eqType; Equality.sort] : GRing.Lalgebra.type >-> predArgType
[GRing.Lalgebra.ringType; GRing.Ring.eqType; Equality.sort; pred_of_argType;
 sort_of_simpl_pred] : GRing.Lalgebra.type >-> pred_sort
[GRing.Lalgebra.ringType; GRing.Ring.eqType; Equality.sort; pred_of_argType;
 collective_pred_of_simpl] : GRing.Lalgebra.type >-> collective_pred
[GRing.Lalgebra.ringType; GRing.Ring.eqType; Equality.sort; pred_of_argType;
 applicative_pred_of_simpl] : GRing.Lalgebra.type >-> applicative_pred
[GRing.Lalgebra.ringType; GRing.Ring.eqType; Equality.sort; pred_of_argType] : GRing.Lalgebra.type >-> simpl_pred
[GRing.Lalgebra.ringType; GRing.Ring.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl] : GRing.Lalgebra.type >-> pred
[GRing.Lalgebra.ringType; GRing.Ring.sort] : GRing.Lalgebra.type >-> Sortclass
[GRing.Lalgebra.ringType; GRing.Ring.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl; fun_of_pred] : GRing.Lalgebra.type >-> Funclass
Ambiguous paths:
[GRing.Lalgebra.lmodType; GRing.Lmodule.zmodType] : GRing.Lalgebra.type >-> GRing.Zmodule.type
[GRing.Lalgebra.lmodType; GRing.Lmodule.choiceType] : GRing.Lalgebra.type >-> Choice.type
[GRing.Lalgebra.lmodType; GRing.Lmodule.eqType] : GRing.Lalgebra.type >-> Equality.type
[GRing.Lalgebra.lmodType; GRing.Lmodule.eqType; Equality.sort] : GRing.Lalgebra.type >-> predArgType
[GRing.Lalgebra.lmodType; GRing.Lmodule.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : GRing.Lalgebra.type >-> pred_sort
[GRing.Lalgebra.lmodType; GRing.Lmodule.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : GRing.Lalgebra.type >-> collective_pred
[GRing.Lalgebra.lmodType; GRing.Lmodule.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : GRing.Lalgebra.type >-> applicative_pred
[GRing.Lalgebra.lmodType; GRing.Lmodule.eqType; Equality.sort;
 pred_of_argType] : GRing.Lalgebra.type >-> simpl_pred
[GRing.Lalgebra.lmodType; GRing.Lmodule.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : GRing.Lalgebra.type >-> pred
[GRing.Lalgebra.lmodType; GRing.Lmodule.sort] : GRing.Lalgebra.type >-> Sortclass
[GRing.Lalgebra.lmodType; GRing.Lmodule.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : GRing.Lalgebra.type >-> Funclass
Ambiguous paths:
[GRing.RMorphism.additive; GRing.Additive.apply] : GRing.RMorphism.map >-> Funclass
Ambiguous paths:
[GRing.Linear.additive; GRing.Additive.apply] : GRing.Linear.map >-> Funclass
Ambiguous paths:
[GRing.LRMorphism.base2; GRing.Linear.base] : GRing.LRMorphism.class_of >-> GRing.Additive.axiom
Ambiguous paths:
[GRing.LRMorphism.additive; GRing.Additive.apply] : GRing.LRMorphism.map >-> Funclass
Ambiguous paths:
[GRing.LRMorphism.rmorphism; GRing.RMorphism.additive] : GRing.LRMorphism.map >-> GRing.Additive.map
[GRing.LRMorphism.rmorphism; GRing.RMorphism.apply] : GRing.LRMorphism.map >-> Funclass
Ambiguous paths:
[GRing.LRMorphism.linear; GRing.Linear.additive] : GRing.LRMorphism.map >-> GRing.Additive.map
[GRing.LRMorphism.linear; GRing.Linear.apply] : GRing.LRMorphism.map >-> Funclass
Ambiguous paths:
[GRing.ComRing.eqType; Equality.sort] : GRing.ComRing.type >-> Sortclass
Ambiguous paths:
[GRing.ComRing.choiceType; Choice.eqType] : GRing.ComRing.type >-> Equality.type
[GRing.ComRing.choiceType; Choice.eqType; Equality.sort] : GRing.ComRing.type >-> predArgType
[GRing.ComRing.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 sort_of_simpl_pred] : GRing.ComRing.type >-> pred_sort
[GRing.ComRing.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 collective_pred_of_simpl] : GRing.ComRing.type >-> collective_pred
[GRing.ComRing.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 applicative_pred_of_simpl] : GRing.ComRing.type >-> applicative_pred
[GRing.ComRing.choiceType; Choice.eqType; Equality.sort; pred_of_argType] : GRing.ComRing.type >-> simpl_pred
[GRing.ComRing.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl] : GRing.ComRing.type >-> pred
[GRing.ComRing.choiceType; Choice.sort] : GRing.ComRing.type >-> Sortclass
[GRing.ComRing.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl; fun_of_pred] : GRing.ComRing.type >-> Funclass
Ambiguous paths:
[GRing.ComRing.zmodType; GRing.Zmodule.choiceType] : GRing.ComRing.type >-> Choice.type
[GRing.ComRing.zmodType; GRing.Zmodule.eqType] : GRing.ComRing.type >-> Equality.type
[GRing.ComRing.zmodType; GRing.Zmodule.eqType; Equality.sort] : GRing.ComRing.type >-> predArgType
[GRing.ComRing.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : GRing.ComRing.type >-> pred_sort
[GRing.ComRing.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : GRing.ComRing.type >-> collective_pred
[GRing.ComRing.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : GRing.ComRing.type >-> applicative_pred
[GRing.ComRing.zmodType; GRing.Zmodule.eqType; Equality.sort; pred_of_argType] : GRing.ComRing.type >-> simpl_pred
[GRing.ComRing.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : GRing.ComRing.type >-> pred
[GRing.ComRing.zmodType; GRing.Zmodule.sort] : GRing.ComRing.type >-> Sortclass
[GRing.ComRing.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : GRing.ComRing.type >-> Funclass
Ambiguous paths:
[GRing.ComRing.ringType; GRing.Ring.zmodType] : GRing.ComRing.type >-> GRing.Zmodule.type
[GRing.ComRing.ringType; GRing.Ring.choiceType] : GRing.ComRing.type >-> Choice.type
[GRing.ComRing.ringType; GRing.Ring.eqType] : GRing.ComRing.type >-> Equality.type
[GRing.ComRing.ringType; GRing.Ring.eqType; Equality.sort] : GRing.ComRing.type >-> predArgType
[GRing.ComRing.ringType; GRing.Ring.eqType; Equality.sort; pred_of_argType;
 sort_of_simpl_pred] : GRing.ComRing.type >-> pred_sort
[GRing.ComRing.ringType; GRing.Ring.eqType; Equality.sort; pred_of_argType;
 collective_pred_of_simpl] : GRing.ComRing.type >-> collective_pred
[GRing.ComRing.ringType; GRing.Ring.eqType; Equality.sort; pred_of_argType;
 applicative_pred_of_simpl] : GRing.ComRing.type >-> applicative_pred
[GRing.ComRing.ringType; GRing.Ring.eqType; Equality.sort; pred_of_argType] : GRing.ComRing.type >-> simpl_pred
[GRing.ComRing.ringType; GRing.Ring.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl] : GRing.ComRing.type >-> pred
[GRing.ComRing.ringType; GRing.Ring.sort] : GRing.ComRing.type >-> Sortclass
[GRing.ComRing.ringType; GRing.Ring.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl; fun_of_pred] : GRing.ComRing.type >-> Funclass
Ambiguous paths:
[GRing.Algebra.eqType; Equality.sort] : GRing.Algebra.type >-> Sortclass
Ambiguous paths:
[GRing.Algebra.choiceType; Choice.eqType] : GRing.Algebra.type >-> Equality.type
[GRing.Algebra.choiceType; Choice.eqType; Equality.sort] : GRing.Algebra.type >-> predArgType
[GRing.Algebra.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 sort_of_simpl_pred] : GRing.Algebra.type >-> pred_sort
[GRing.Algebra.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 collective_pred_of_simpl] : GRing.Algebra.type >-> collective_pred
[GRing.Algebra.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 applicative_pred_of_simpl] : GRing.Algebra.type >-> applicative_pred
[GRing.Algebra.choiceType; Choice.eqType; Equality.sort; pred_of_argType] : GRing.Algebra.type >-> simpl_pred
[GRing.Algebra.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl] : GRing.Algebra.type >-> pred
[GRing.Algebra.choiceType; Choice.sort] : GRing.Algebra.type >-> Sortclass
[GRing.Algebra.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl; fun_of_pred] : GRing.Algebra.type >-> Funclass
Ambiguous paths:
[GRing.Algebra.zmodType; GRing.Zmodule.choiceType] : GRing.Algebra.type >-> Choice.type
[GRing.Algebra.zmodType; GRing.Zmodule.eqType] : GRing.Algebra.type >-> Equality.type
[GRing.Algebra.zmodType; GRing.Zmodule.eqType; Equality.sort] : GRing.Algebra.type >-> predArgType
[GRing.Algebra.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : GRing.Algebra.type >-> pred_sort
[GRing.Algebra.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : GRing.Algebra.type >-> collective_pred
[GRing.Algebra.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : GRing.Algebra.type >-> applicative_pred
[GRing.Algebra.zmodType; GRing.Zmodule.eqType; Equality.sort; pred_of_argType] : GRing.Algebra.type >-> simpl_pred
[GRing.Algebra.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : GRing.Algebra.type >-> pred
[GRing.Algebra.zmodType; GRing.Zmodule.sort] : GRing.Algebra.type >-> Sortclass
[GRing.Algebra.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : GRing.Algebra.type >-> Funclass
Ambiguous paths:
[GRing.Algebra.ringType; GRing.Ring.zmodType] : GRing.Algebra.type >-> GRing.Zmodule.type
[GRing.Algebra.ringType; GRing.Ring.choiceType] : GRing.Algebra.type >-> Choice.type
[GRing.Algebra.ringType; GRing.Ring.eqType] : GRing.Algebra.type >-> Equality.type
[GRing.Algebra.ringType; GRing.Ring.eqType; Equality.sort] : GRing.Algebra.type >-> predArgType
[GRing.Algebra.ringType; GRing.Ring.eqType; Equality.sort; pred_of_argType;
 sort_of_simpl_pred] : GRing.Algebra.type >-> pred_sort
[GRing.Algebra.ringType; GRing.Ring.eqType; Equality.sort; pred_of_argType;
 collective_pred_of_simpl] : GRing.Algebra.type >-> collective_pred
[GRing.Algebra.ringType; GRing.Ring.eqType; Equality.sort; pred_of_argType;
 applicative_pred_of_simpl] : GRing.Algebra.type >-> applicative_pred
[GRing.Algebra.ringType; GRing.Ring.eqType; Equality.sort; pred_of_argType] : GRing.Algebra.type >-> simpl_pred
[GRing.Algebra.ringType; GRing.Ring.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl] : GRing.Algebra.type >-> pred
[GRing.Algebra.ringType; GRing.Ring.sort] : GRing.Algebra.type >-> Sortclass
[GRing.Algebra.ringType; GRing.Ring.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl; fun_of_pred] : GRing.Algebra.type >-> Funclass
Ambiguous paths:
[GRing.Algebra.lmodType; GRing.Lmodule.zmodType] : GRing.Algebra.type >-> GRing.Zmodule.type
[GRing.Algebra.lmodType; GRing.Lmodule.choiceType] : GRing.Algebra.type >-> Choice.type
[GRing.Algebra.lmodType; GRing.Lmodule.eqType] : GRing.Algebra.type >-> Equality.type
[GRing.Algebra.lmodType; GRing.Lmodule.eqType; Equality.sort] : GRing.Algebra.type >-> predArgType
[GRing.Algebra.lmodType; GRing.Lmodule.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : GRing.Algebra.type >-> pred_sort
[GRing.Algebra.lmodType; GRing.Lmodule.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : GRing.Algebra.type >-> collective_pred
[GRing.Algebra.lmodType; GRing.Lmodule.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : GRing.Algebra.type >-> applicative_pred
[GRing.Algebra.lmodType; GRing.Lmodule.eqType; Equality.sort; pred_of_argType] : GRing.Algebra.type >-> simpl_pred
[GRing.Algebra.lmodType; GRing.Lmodule.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : GRing.Algebra.type >-> pred
[GRing.Algebra.lmodType; GRing.Lmodule.sort] : GRing.Algebra.type >-> Sortclass
[GRing.Algebra.lmodType; GRing.Lmodule.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : GRing.Algebra.type >-> Funclass
Ambiguous paths:
[GRing.Algebra.lalgType; GRing.Lalgebra.lmodType] : GRing.Algebra.type >-> GRing.Lmodule.type
[GRing.Algebra.lalgType; GRing.Lalgebra.ringType] : GRing.Algebra.type >-> GRing.Ring.type
[GRing.Algebra.lalgType; GRing.Lalgebra.zmodType] : GRing.Algebra.type >-> GRing.Zmodule.type
[GRing.Algebra.lalgType; GRing.Lalgebra.choiceType] : GRing.Algebra.type >-> Choice.type
[GRing.Algebra.lalgType; GRing.Lalgebra.eqType] : GRing.Algebra.type >-> Equality.type
[GRing.Algebra.lalgType; GRing.Lalgebra.eqType; Equality.sort] : GRing.Algebra.type >-> predArgType
[GRing.Algebra.lalgType; GRing.Lalgebra.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : GRing.Algebra.type >-> pred_sort
[GRing.Algebra.lalgType; GRing.Lalgebra.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : GRing.Algebra.type >-> collective_pred
[GRing.Algebra.lalgType; GRing.Lalgebra.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : GRing.Algebra.type >-> applicative_pred
[GRing.Algebra.lalgType; GRing.Lalgebra.eqType; Equality.sort;
 pred_of_argType] : GRing.Algebra.type >-> simpl_pred
[GRing.Algebra.lalgType; GRing.Lalgebra.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : GRing.Algebra.type >-> pred
[GRing.Algebra.lalgType; GRing.Lalgebra.sort] : GRing.Algebra.type >-> Sortclass
[GRing.Algebra.lalgType; GRing.Lalgebra.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : GRing.Algebra.type >-> Funclass
Ambiguous paths:
[GRing.UnitRing.eqType; Equality.sort] : GRing.UnitRing.type >-> Sortclass
Ambiguous paths:
[GRing.UnitRing.choiceType; Choice.eqType] : GRing.UnitRing.type >-> Equality.type
[GRing.UnitRing.choiceType; Choice.eqType; Equality.sort] : GRing.UnitRing.type >-> predArgType
[GRing.UnitRing.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 sort_of_simpl_pred] : GRing.UnitRing.type >-> pred_sort
[GRing.UnitRing.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 collective_pred_of_simpl] : GRing.UnitRing.type >-> collective_pred
[GRing.UnitRing.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 applicative_pred_of_simpl] : GRing.UnitRing.type >-> applicative_pred
[GRing.UnitRing.choiceType; Choice.eqType; Equality.sort; pred_of_argType] : GRing.UnitRing.type >-> simpl_pred
[GRing.UnitRing.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl] : GRing.UnitRing.type >-> pred
[GRing.UnitRing.choiceType; Choice.sort] : GRing.UnitRing.type >-> Sortclass
[GRing.UnitRing.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl; fun_of_pred] : GRing.UnitRing.type >-> Funclass
Ambiguous paths:
[GRing.UnitRing.zmodType; GRing.Zmodule.choiceType] : GRing.UnitRing.type >-> Choice.type
[GRing.UnitRing.zmodType; GRing.Zmodule.eqType] : GRing.UnitRing.type >-> Equality.type
[GRing.UnitRing.zmodType; GRing.Zmodule.eqType; Equality.sort] : GRing.UnitRing.type >-> predArgType
[GRing.UnitRing.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : GRing.UnitRing.type >-> pred_sort
[GRing.UnitRing.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : GRing.UnitRing.type >-> collective_pred
[GRing.UnitRing.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : GRing.UnitRing.type >-> applicative_pred
[GRing.UnitRing.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType] : GRing.UnitRing.type >-> simpl_pred
[GRing.UnitRing.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : GRing.UnitRing.type >-> pred
[GRing.UnitRing.zmodType; GRing.Zmodule.sort] : GRing.UnitRing.type >-> Sortclass
[GRing.UnitRing.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : GRing.UnitRing.type >-> Funclass
Ambiguous paths:
[GRing.UnitRing.ringType; GRing.Ring.zmodType] : GRing.UnitRing.type >-> GRing.Zmodule.type
[GRing.UnitRing.ringType; GRing.Ring.choiceType] : GRing.UnitRing.type >-> Choice.type
[GRing.UnitRing.ringType; GRing.Ring.eqType] : GRing.UnitRing.type >-> Equality.type
[GRing.UnitRing.ringType; GRing.Ring.eqType; Equality.sort] : GRing.UnitRing.type >-> predArgType
[GRing.UnitRing.ringType; GRing.Ring.eqType; Equality.sort; pred_of_argType;
 sort_of_simpl_pred] : GRing.UnitRing.type >-> pred_sort
[GRing.UnitRing.ringType; GRing.Ring.eqType; Equality.sort; pred_of_argType;
 collective_pred_of_simpl] : GRing.UnitRing.type >-> collective_pred
[GRing.UnitRing.ringType; GRing.Ring.eqType; Equality.sort; pred_of_argType;
 applicative_pred_of_simpl] : GRing.UnitRing.type >-> applicative_pred
[GRing.UnitRing.ringType; GRing.Ring.eqType; Equality.sort; pred_of_argType] : GRing.UnitRing.type >-> simpl_pred
[GRing.UnitRing.ringType; GRing.Ring.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl] : GRing.UnitRing.type >-> pred
[GRing.UnitRing.ringType; GRing.Ring.sort] : GRing.UnitRing.type >-> Sortclass
[GRing.UnitRing.ringType; GRing.Ring.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl; fun_of_pred] : GRing.UnitRing.type >-> Funclass
Ambiguous paths:
[GRing.UnitAlgebra.base2; GRing.UnitRing.base; GRing.Ring.mixin] : GRing.UnitAlgebra.class_of >-> GRing.Ring.mixin_of
[GRing.UnitAlgebra.base2; GRing.UnitRing.base] : GRing.UnitAlgebra.class_of >-> GRing.Ring.class_of
[GRing.UnitAlgebra.base2; GRing.UnitRing.base; GRing.Ring.base;
 GRing.Zmodule.mixin] : GRing.UnitAlgebra.class_of >-> GRing.Zmodule.mixin_of
[GRing.UnitAlgebra.base2; GRing.UnitRing.base; GRing.Ring.base] : GRing.UnitAlgebra.class_of >-> GRing.Zmodule.class_of
[GRing.UnitAlgebra.base2; GRing.UnitRing.base; GRing.Ring.base;
 GRing.Zmodule.base; Choice.base] : GRing.UnitAlgebra.class_of >-> Equality.mixin_of
[GRing.UnitAlgebra.base2; GRing.UnitRing.base; GRing.Ring.base;
 GRing.Zmodule.base] : GRing.UnitAlgebra.class_of >-> Choice.class_of
Ambiguous paths:
[GRing.UnitAlgebra.eqType; Equality.sort] : GRing.UnitAlgebra.type >-> Sortclass
Ambiguous paths:
[GRing.UnitAlgebra.choiceType; Choice.eqType] : GRing.UnitAlgebra.type >-> Equality.type
[GRing.UnitAlgebra.choiceType; Choice.eqType; Equality.sort] : GRing.UnitAlgebra.type >-> predArgType
[GRing.UnitAlgebra.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 sort_of_simpl_pred] : GRing.UnitAlgebra.type >-> pred_sort
[GRing.UnitAlgebra.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 collective_pred_of_simpl] : GRing.UnitAlgebra.type >-> collective_pred
[GRing.UnitAlgebra.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 applicative_pred_of_simpl] : GRing.UnitAlgebra.type >-> applicative_pred
[GRing.UnitAlgebra.choiceType; Choice.eqType; Equality.sort; pred_of_argType] : GRing.UnitAlgebra.type >-> simpl_pred
[GRing.UnitAlgebra.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl] : GRing.UnitAlgebra.type >-> pred
[GRing.UnitAlgebra.choiceType; Choice.sort] : GRing.UnitAlgebra.type >-> Sortclass
[GRing.UnitAlgebra.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl; fun_of_pred] : GRing.UnitAlgebra.type >-> Funclass
Ambiguous paths:
[GRing.UnitAlgebra.zmodType; GRing.Zmodule.choiceType] : GRing.UnitAlgebra.type >-> Choice.type
[GRing.UnitAlgebra.zmodType; GRing.Zmodule.eqType] : GRing.UnitAlgebra.type >-> Equality.type
[GRing.UnitAlgebra.zmodType; GRing.Zmodule.eqType; Equality.sort] : GRing.UnitAlgebra.type >-> predArgType
[GRing.UnitAlgebra.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : GRing.UnitAlgebra.type >-> pred_sort
[GRing.UnitAlgebra.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : GRing.UnitAlgebra.type >-> collective_pred
[GRing.UnitAlgebra.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : GRing.UnitAlgebra.type >-> applicative_pred
[GRing.UnitAlgebra.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType] : GRing.UnitAlgebra.type >-> simpl_pred
[GRing.UnitAlgebra.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : GRing.UnitAlgebra.type >-> pred
[GRing.UnitAlgebra.zmodType; GRing.Zmodule.sort] : GRing.UnitAlgebra.type >-> Sortclass
[GRing.UnitAlgebra.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : GRing.UnitAlgebra.type >-> Funclass
Ambiguous paths:
[GRing.UnitAlgebra.ringType; GRing.Ring.zmodType] : GRing.UnitAlgebra.type >-> GRing.Zmodule.type
[GRing.UnitAlgebra.ringType; GRing.Ring.choiceType] : GRing.UnitAlgebra.type >-> Choice.type
[GRing.UnitAlgebra.ringType; GRing.Ring.eqType] : GRing.UnitAlgebra.type >-> Equality.type
[GRing.UnitAlgebra.ringType; GRing.Ring.eqType; Equality.sort] : GRing.UnitAlgebra.type >-> predArgType
[GRing.UnitAlgebra.ringType; GRing.Ring.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : GRing.UnitAlgebra.type >-> pred_sort
[GRing.UnitAlgebra.ringType; GRing.Ring.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : GRing.UnitAlgebra.type >-> collective_pred
[GRing.UnitAlgebra.ringType; GRing.Ring.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : GRing.UnitAlgebra.type >-> applicative_pred
[GRing.UnitAlgebra.ringType; GRing.Ring.eqType; Equality.sort;
 pred_of_argType] : GRing.UnitAlgebra.type >-> simpl_pred
[GRing.UnitAlgebra.ringType; GRing.Ring.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : GRing.UnitAlgebra.type >-> pred
[GRing.UnitAlgebra.ringType; GRing.Ring.sort] : GRing.UnitAlgebra.type >-> Sortclass
[GRing.UnitAlgebra.ringType; GRing.Ring.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : GRing.UnitAlgebra.type >-> Funclass
Ambiguous paths:
[GRing.UnitAlgebra.unitRingType; GRing.UnitRing.ringType] : GRing.UnitAlgebra.type >-> GRing.Ring.type
[GRing.UnitAlgebra.unitRingType; GRing.UnitRing.zmodType] : GRing.UnitAlgebra.type >-> GRing.Zmodule.type
[GRing.UnitAlgebra.unitRingType; GRing.UnitRing.choiceType] : GRing.UnitAlgebra.type >-> Choice.type
[GRing.UnitAlgebra.unitRingType; GRing.UnitRing.eqType] : GRing.UnitAlgebra.type >-> Equality.type
[GRing.UnitAlgebra.unitRingType; GRing.UnitRing.eqType; Equality.sort] : GRing.UnitAlgebra.type >-> predArgType
[GRing.UnitAlgebra.unitRingType; GRing.UnitRing.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : GRing.UnitAlgebra.type >-> pred_sort
[GRing.UnitAlgebra.unitRingType; GRing.UnitRing.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : GRing.UnitAlgebra.type >-> collective_pred
[GRing.UnitAlgebra.unitRingType; GRing.UnitRing.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : GRing.UnitAlgebra.type >-> applicative_pred
[GRing.UnitAlgebra.unitRingType; GRing.UnitRing.eqType; Equality.sort;
 pred_of_argType] : GRing.UnitAlgebra.type >-> simpl_pred
[GRing.UnitAlgebra.unitRingType; GRing.UnitRing.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : GRing.UnitAlgebra.type >-> pred
[GRing.UnitAlgebra.unitRingType; GRing.UnitRing.sort] : GRing.UnitAlgebra.type >-> Sortclass
[GRing.UnitAlgebra.unitRingType; GRing.UnitRing.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : GRing.UnitAlgebra.type >-> Funclass
Ambiguous paths:
[GRing.UnitAlgebra.lmodType; GRing.Lmodule.zmodType] : GRing.UnitAlgebra.type >-> GRing.Zmodule.type
[GRing.UnitAlgebra.lmodType; GRing.Lmodule.choiceType] : GRing.UnitAlgebra.type >-> Choice.type
[GRing.UnitAlgebra.lmodType; GRing.Lmodule.eqType] : GRing.UnitAlgebra.type >-> Equality.type
[GRing.UnitAlgebra.lmodType; GRing.Lmodule.eqType; Equality.sort] : GRing.UnitAlgebra.type >-> predArgType
[GRing.UnitAlgebra.lmodType; GRing.Lmodule.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : GRing.UnitAlgebra.type >-> pred_sort
[GRing.UnitAlgebra.lmodType; GRing.Lmodule.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : GRing.UnitAlgebra.type >-> collective_pred
[GRing.UnitAlgebra.lmodType; GRing.Lmodule.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : GRing.UnitAlgebra.type >-> applicative_pred
[GRing.UnitAlgebra.lmodType; GRing.Lmodule.eqType; Equality.sort;
 pred_of_argType] : GRing.UnitAlgebra.type >-> simpl_pred
[GRing.UnitAlgebra.lmodType; GRing.Lmodule.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : GRing.UnitAlgebra.type >-> pred
[GRing.UnitAlgebra.lmodType; GRing.Lmodule.sort] : GRing.UnitAlgebra.type >-> Sortclass
[GRing.UnitAlgebra.lmodType; GRing.Lmodule.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : GRing.UnitAlgebra.type >-> Funclass
Ambiguous paths:
[GRing.UnitAlgebra.lalgType; GRing.Lalgebra.lmodType] : GRing.UnitAlgebra.type >-> GRing.Lmodule.type
[GRing.UnitAlgebra.lalgType; GRing.Lalgebra.ringType] : GRing.UnitAlgebra.type >-> GRing.Ring.type
[GRing.UnitAlgebra.lalgType; GRing.Lalgebra.zmodType] : GRing.UnitAlgebra.type >-> GRing.Zmodule.type
[GRing.UnitAlgebra.lalgType; GRing.Lalgebra.choiceType] : GRing.UnitAlgebra.type >-> Choice.type
[GRing.UnitAlgebra.lalgType; GRing.Lalgebra.eqType] : GRing.UnitAlgebra.type >-> Equality.type
[GRing.UnitAlgebra.lalgType; GRing.Lalgebra.eqType; Equality.sort] : GRing.UnitAlgebra.type >-> predArgType
[GRing.UnitAlgebra.lalgType; GRing.Lalgebra.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : GRing.UnitAlgebra.type >-> pred_sort
[GRing.UnitAlgebra.lalgType; GRing.Lalgebra.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : GRing.UnitAlgebra.type >-> collective_pred
[GRing.UnitAlgebra.lalgType; GRing.Lalgebra.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : GRing.UnitAlgebra.type >-> applicative_pred
[GRing.UnitAlgebra.lalgType; GRing.Lalgebra.eqType; Equality.sort;
 pred_of_argType] : GRing.UnitAlgebra.type >-> simpl_pred
[GRing.UnitAlgebra.lalgType; GRing.Lalgebra.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : GRing.UnitAlgebra.type >-> pred
[GRing.UnitAlgebra.lalgType; GRing.Lalgebra.sort] : GRing.UnitAlgebra.type >-> Sortclass
[GRing.UnitAlgebra.lalgType; GRing.Lalgebra.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : GRing.UnitAlgebra.type >-> Funclass
Ambiguous paths:
[GRing.UnitAlgebra.algType; GRing.Algebra.lalgType] : GRing.UnitAlgebra.type >-> GRing.Lalgebra.type
[GRing.UnitAlgebra.algType; GRing.Algebra.lmodType] : GRing.UnitAlgebra.type >-> GRing.Lmodule.type
[GRing.UnitAlgebra.algType; GRing.Algebra.ringType] : GRing.UnitAlgebra.type >-> GRing.Ring.type
[GRing.UnitAlgebra.algType; GRing.Algebra.zmodType] : GRing.UnitAlgebra.type >-> GRing.Zmodule.type
[GRing.UnitAlgebra.algType; GRing.Algebra.choiceType] : GRing.UnitAlgebra.type >-> Choice.type
[GRing.UnitAlgebra.algType; GRing.Algebra.eqType] : GRing.UnitAlgebra.type >-> Equality.type
[GRing.UnitAlgebra.algType; GRing.Algebra.eqType; Equality.sort] : GRing.UnitAlgebra.type >-> predArgType
[GRing.UnitAlgebra.algType; GRing.Algebra.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : GRing.UnitAlgebra.type >-> pred_sort
[GRing.UnitAlgebra.algType; GRing.Algebra.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : GRing.UnitAlgebra.type >-> collective_pred
[GRing.UnitAlgebra.algType; GRing.Algebra.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : GRing.UnitAlgebra.type >-> applicative_pred
[GRing.UnitAlgebra.algType; GRing.Algebra.eqType; Equality.sort;
 pred_of_argType] : GRing.UnitAlgebra.type >-> simpl_pred
[GRing.UnitAlgebra.algType; GRing.Algebra.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : GRing.UnitAlgebra.type >-> pred
[GRing.UnitAlgebra.algType; GRing.Algebra.sort] : GRing.UnitAlgebra.type >-> Sortclass
[GRing.UnitAlgebra.algType; GRing.Algebra.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : GRing.UnitAlgebra.type >-> Funclass
Ambiguous paths:
[GRing.ComUnitRing.base2; GRing.UnitRing.mixin] : GRing.ComUnitRing.class_of >-> GRing.UnitRing.mixin_of
[GRing.ComUnitRing.base2; GRing.UnitRing.base; GRing.Ring.mixin] : GRing.ComUnitRing.class_of >-> GRing.Ring.mixin_of
[GRing.ComUnitRing.base2; GRing.UnitRing.base] : GRing.ComUnitRing.class_of >-> GRing.Ring.class_of
[GRing.ComUnitRing.base2; GRing.UnitRing.base; GRing.Ring.base;
 GRing.Zmodule.mixin] : GRing.ComUnitRing.class_of >-> GRing.Zmodule.mixin_of
[GRing.ComUnitRing.base2; GRing.UnitRing.base; GRing.Ring.base] : GRing.ComUnitRing.class_of >-> GRing.Zmodule.class_of
[GRing.ComUnitRing.base2; GRing.UnitRing.base; GRing.Ring.base;
 GRing.Zmodule.base; Choice.base] : GRing.ComUnitRing.class_of >-> Equality.mixin_of
[GRing.ComUnitRing.base2; GRing.UnitRing.base; GRing.Ring.base;
 GRing.Zmodule.base] : GRing.ComUnitRing.class_of >-> Choice.class_of
Ambiguous paths:
[GRing.ComUnitRing.eqType; Equality.sort] : GRing.ComUnitRing.type >-> Sortclass
Ambiguous paths:
[GRing.ComUnitRing.choiceType; Choice.eqType] : GRing.ComUnitRing.type >-> Equality.type
[GRing.ComUnitRing.choiceType; Choice.eqType; Equality.sort] : GRing.ComUnitRing.type >-> predArgType
[GRing.ComUnitRing.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 sort_of_simpl_pred] : GRing.ComUnitRing.type >-> pred_sort
[GRing.ComUnitRing.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 collective_pred_of_simpl] : GRing.ComUnitRing.type >-> collective_pred
[GRing.ComUnitRing.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 applicative_pred_of_simpl] : GRing.ComUnitRing.type >-> applicative_pred
[GRing.ComUnitRing.choiceType; Choice.eqType; Equality.sort; pred_of_argType] : GRing.ComUnitRing.type >-> simpl_pred
[GRing.ComUnitRing.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl] : GRing.ComUnitRing.type >-> pred
[GRing.ComUnitRing.choiceType; Choice.sort] : GRing.ComUnitRing.type >-> Sortclass
[GRing.ComUnitRing.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl; fun_of_pred] : GRing.ComUnitRing.type >-> Funclass
Ambiguous paths:
[GRing.ComUnitRing.zmodType; GRing.Zmodule.choiceType] : GRing.ComUnitRing.type >-> Choice.type
[GRing.ComUnitRing.zmodType; GRing.Zmodule.eqType] : GRing.ComUnitRing.type >-> Equality.type
[GRing.ComUnitRing.zmodType; GRing.Zmodule.eqType; Equality.sort] : GRing.ComUnitRing.type >-> predArgType
[GRing.ComUnitRing.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : GRing.ComUnitRing.type >-> pred_sort
[GRing.ComUnitRing.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : GRing.ComUnitRing.type >-> collective_pred
[GRing.ComUnitRing.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : GRing.ComUnitRing.type >-> applicative_pred
[GRing.ComUnitRing.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType] : GRing.ComUnitRing.type >-> simpl_pred
[GRing.ComUnitRing.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : GRing.ComUnitRing.type >-> pred
[GRing.ComUnitRing.zmodType; GRing.Zmodule.sort] : GRing.ComUnitRing.type >-> Sortclass
[GRing.ComUnitRing.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : GRing.ComUnitRing.type >-> Funclass
Ambiguous paths:
[GRing.ComUnitRing.ringType; GRing.Ring.zmodType] : GRing.ComUnitRing.type >-> GRing.Zmodule.type
[GRing.ComUnitRing.ringType; GRing.Ring.choiceType] : GRing.ComUnitRing.type >-> Choice.type
[GRing.ComUnitRing.ringType; GRing.Ring.eqType] : GRing.ComUnitRing.type >-> Equality.type
[GRing.ComUnitRing.ringType; GRing.Ring.eqType; Equality.sort] : GRing.ComUnitRing.type >-> predArgType
[GRing.ComUnitRing.ringType; GRing.Ring.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : GRing.ComUnitRing.type >-> pred_sort
[GRing.ComUnitRing.ringType; GRing.Ring.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : GRing.ComUnitRing.type >-> collective_pred
[GRing.ComUnitRing.ringType; GRing.Ring.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : GRing.ComUnitRing.type >-> applicative_pred
[GRing.ComUnitRing.ringType; GRing.Ring.eqType; Equality.sort;
 pred_of_argType] : GRing.ComUnitRing.type >-> simpl_pred
[GRing.ComUnitRing.ringType; GRing.Ring.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : GRing.ComUnitRing.type >-> pred
[GRing.ComUnitRing.ringType; GRing.Ring.sort] : GRing.ComUnitRing.type >-> Sortclass
[GRing.ComUnitRing.ringType; GRing.Ring.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : GRing.ComUnitRing.type >-> Funclass
Ambiguous paths:
[GRing.ComUnitRing.comRingType; GRing.ComRing.ringType] : GRing.ComUnitRing.type >-> GRing.Ring.type
[GRing.ComUnitRing.comRingType; GRing.ComRing.zmodType] : GRing.ComUnitRing.type >-> GRing.Zmodule.type
[GRing.ComUnitRing.comRingType; GRing.ComRing.choiceType] : GRing.ComUnitRing.type >-> Choice.type
[GRing.ComUnitRing.comRingType; GRing.ComRing.eqType] : GRing.ComUnitRing.type >-> Equality.type
[GRing.ComUnitRing.comRingType; GRing.ComRing.eqType; Equality.sort] : GRing.ComUnitRing.type >-> predArgType
[GRing.ComUnitRing.comRingType; GRing.ComRing.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : GRing.ComUnitRing.type >-> pred_sort
[GRing.ComUnitRing.comRingType; GRing.ComRing.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : GRing.ComUnitRing.type >-> collective_pred
[GRing.ComUnitRing.comRingType; GRing.ComRing.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : GRing.ComUnitRing.type >-> applicative_pred
[GRing.ComUnitRing.comRingType; GRing.ComRing.eqType; Equality.sort;
 pred_of_argType] : GRing.ComUnitRing.type >-> simpl_pred
[GRing.ComUnitRing.comRingType; GRing.ComRing.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : GRing.ComUnitRing.type >-> pred
[GRing.ComUnitRing.comRingType; GRing.ComRing.sort] : GRing.ComUnitRing.type >-> Sortclass
[GRing.ComUnitRing.comRingType; GRing.ComRing.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : GRing.ComUnitRing.type >-> Funclass
Ambiguous paths:
[GRing.ComUnitRing.unitRingType; GRing.UnitRing.ringType] : GRing.ComUnitRing.type >-> GRing.Ring.type
[GRing.ComUnitRing.unitRingType; GRing.UnitRing.zmodType] : GRing.ComUnitRing.type >-> GRing.Zmodule.type
[GRing.ComUnitRing.unitRingType; GRing.UnitRing.choiceType] : GRing.ComUnitRing.type >-> Choice.type
[GRing.ComUnitRing.unitRingType; GRing.UnitRing.eqType] : GRing.ComUnitRing.type >-> Equality.type
[GRing.ComUnitRing.unitRingType; GRing.UnitRing.eqType; Equality.sort] : GRing.ComUnitRing.type >-> predArgType
[GRing.ComUnitRing.unitRingType; GRing.UnitRing.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : GRing.ComUnitRing.type >-> pred_sort
[GRing.ComUnitRing.unitRingType; GRing.UnitRing.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : GRing.ComUnitRing.type >-> collective_pred
[GRing.ComUnitRing.unitRingType; GRing.UnitRing.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : GRing.ComUnitRing.type >-> applicative_pred
[GRing.ComUnitRing.unitRingType; GRing.UnitRing.eqType; Equality.sort;
 pred_of_argType] : GRing.ComUnitRing.type >-> simpl_pred
[GRing.ComUnitRing.unitRingType; GRing.UnitRing.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : GRing.ComUnitRing.type >-> pred
[GRing.ComUnitRing.unitRingType; GRing.UnitRing.sort] : GRing.ComUnitRing.type >-> Sortclass
[GRing.ComUnitRing.unitRingType; GRing.UnitRing.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : GRing.ComUnitRing.type >-> Funclass
Ambiguous paths:
[GRing.IntegralDomain.eqType; Equality.sort] : GRing.IntegralDomain.type >-> Sortclass
Ambiguous paths:
[GRing.IntegralDomain.choiceType; Choice.eqType] : GRing.IntegralDomain.type >-> Equality.type
[GRing.IntegralDomain.choiceType; Choice.eqType; Equality.sort] : GRing.IntegralDomain.type >-> predArgType
[GRing.IntegralDomain.choiceType; Choice.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : GRing.IntegralDomain.type >-> pred_sort
[GRing.IntegralDomain.choiceType; Choice.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : GRing.IntegralDomain.type >-> collective_pred
[GRing.IntegralDomain.choiceType; Choice.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : GRing.IntegralDomain.type >-> applicative_pred
[GRing.IntegralDomain.choiceType; Choice.eqType; Equality.sort;
 pred_of_argType] : GRing.IntegralDomain.type >-> simpl_pred
[GRing.IntegralDomain.choiceType; Choice.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : GRing.IntegralDomain.type >-> pred
[GRing.IntegralDomain.choiceType; Choice.sort] : GRing.IntegralDomain.type >-> Sortclass
[GRing.IntegralDomain.choiceType; Choice.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : GRing.IntegralDomain.type >-> Funclass
Ambiguous paths:
[GRing.IntegralDomain.zmodType; GRing.Zmodule.choiceType] : GRing.IntegralDomain.type >-> Choice.type
[GRing.IntegralDomain.zmodType; GRing.Zmodule.eqType] : GRing.IntegralDomain.type >-> Equality.type
[GRing.IntegralDomain.zmodType; GRing.Zmodule.eqType; Equality.sort] : GRing.IntegralDomain.type >-> predArgType
[GRing.IntegralDomain.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : GRing.IntegralDomain.type >-> pred_sort
[GRing.IntegralDomain.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : GRing.IntegralDomain.type >-> collective_pred
[GRing.IntegralDomain.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : GRing.IntegralDomain.type >-> applicative_pred
[GRing.IntegralDomain.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType] : GRing.IntegralDomain.type >-> simpl_pred
[GRing.IntegralDomain.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : GRing.IntegralDomain.type >-> pred
[GRing.IntegralDomain.zmodType; GRing.Zmodule.sort] : GRing.IntegralDomain.type >-> Sortclass
[GRing.IntegralDomain.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : GRing.IntegralDomain.type >-> Funclass
Ambiguous paths:
[GRing.IntegralDomain.ringType; GRing.Ring.zmodType] : GRing.IntegralDomain.type >-> GRing.Zmodule.type
[GRing.IntegralDomain.ringType; GRing.Ring.choiceType] : GRing.IntegralDomain.type >-> Choice.type
[GRing.IntegralDomain.ringType; GRing.Ring.eqType] : GRing.IntegralDomain.type >-> Equality.type
[GRing.IntegralDomain.ringType; GRing.Ring.eqType; Equality.sort] : GRing.IntegralDomain.type >-> predArgType
[GRing.IntegralDomain.ringType; GRing.Ring.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : GRing.IntegralDomain.type >-> pred_sort
[GRing.IntegralDomain.ringType; GRing.Ring.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : GRing.IntegralDomain.type >-> collective_pred
[GRing.IntegralDomain.ringType; GRing.Ring.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : GRing.IntegralDomain.type >-> applicative_pred
[GRing.IntegralDomain.ringType; GRing.Ring.eqType; Equality.sort;
 pred_of_argType] : GRing.IntegralDomain.type >-> simpl_pred
[GRing.IntegralDomain.ringType; GRing.Ring.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : GRing.IntegralDomain.type >-> pred
[GRing.IntegralDomain.ringType; GRing.Ring.sort] : GRing.IntegralDomain.type >-> Sortclass
[GRing.IntegralDomain.ringType; GRing.Ring.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : GRing.IntegralDomain.type >-> Funclass
Ambiguous paths:
[GRing.IntegralDomain.comRingType; GRing.ComRing.ringType] : GRing.IntegralDomain.type >-> GRing.Ring.type
[GRing.IntegralDomain.comRingType; GRing.ComRing.zmodType] : GRing.IntegralDomain.type >-> GRing.Zmodule.type
[GRing.IntegralDomain.comRingType; GRing.ComRing.choiceType] : GRing.IntegralDomain.type >-> Choice.type
[GRing.IntegralDomain.comRingType; GRing.ComRing.eqType] : GRing.IntegralDomain.type >-> Equality.type
[GRing.IntegralDomain.comRingType; GRing.ComRing.eqType; Equality.sort] : GRing.IntegralDomain.type >-> predArgType
[GRing.IntegralDomain.comRingType; GRing.ComRing.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : GRing.IntegralDomain.type >-> pred_sort
[GRing.IntegralDomain.comRingType; GRing.ComRing.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : GRing.IntegralDomain.type >-> collective_pred
[GRing.IntegralDomain.comRingType; GRing.ComRing.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : GRing.IntegralDomain.type >-> applicative_pred
[GRing.IntegralDomain.comRingType; GRing.ComRing.eqType; Equality.sort;
 pred_of_argType] : GRing.IntegralDomain.type >-> simpl_pred
[GRing.IntegralDomain.comRingType; GRing.ComRing.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : GRing.IntegralDomain.type >-> pred
[GRing.IntegralDomain.comRingType; GRing.ComRing.sort] : GRing.IntegralDomain.type >-> Sortclass
[GRing.IntegralDomain.comRingType; GRing.ComRing.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : GRing.IntegralDomain.type >-> Funclass
Ambiguous paths:
[GRing.IntegralDomain.unitRingType; GRing.UnitRing.ringType] : GRing.IntegralDomain.type >-> GRing.Ring.type
[GRing.IntegralDomain.unitRingType; GRing.UnitRing.zmodType] : GRing.IntegralDomain.type >-> GRing.Zmodule.type
[GRing.IntegralDomain.unitRingType; GRing.UnitRing.choiceType] : GRing.IntegralDomain.type >-> Choice.type
[GRing.IntegralDomain.unitRingType; GRing.UnitRing.eqType] : GRing.IntegralDomain.type >-> Equality.type
[GRing.IntegralDomain.unitRingType; GRing.UnitRing.eqType; Equality.sort] : GRing.IntegralDomain.type >-> predArgType
[GRing.IntegralDomain.unitRingType; GRing.UnitRing.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : GRing.IntegralDomain.type >-> pred_sort
[GRing.IntegralDomain.unitRingType; GRing.UnitRing.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : GRing.IntegralDomain.type >-> collective_pred
[GRing.IntegralDomain.unitRingType; GRing.UnitRing.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : GRing.IntegralDomain.type >-> applicative_pred
[GRing.IntegralDomain.unitRingType; GRing.UnitRing.eqType; Equality.sort;
 pred_of_argType] : GRing.IntegralDomain.type >-> simpl_pred
[GRing.IntegralDomain.unitRingType; GRing.UnitRing.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : GRing.IntegralDomain.type >-> pred
[GRing.IntegralDomain.unitRingType; GRing.UnitRing.sort] : GRing.IntegralDomain.type >-> Sortclass
[GRing.IntegralDomain.unitRingType; GRing.UnitRing.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : GRing.IntegralDomain.type >-> Funclass
Ambiguous paths:
[GRing.IntegralDomain.comUnitRingType; GRing.ComUnitRing.unitRingType] : GRing.IntegralDomain.type >-> GRing.UnitRing.type
[GRing.IntegralDomain.comUnitRingType; GRing.ComUnitRing.comRingType] : GRing.IntegralDomain.type >-> GRing.ComRing.type
[GRing.IntegralDomain.comUnitRingType; GRing.ComUnitRing.ringType] : GRing.IntegralDomain.type >-> GRing.Ring.type
[GRing.IntegralDomain.comUnitRingType; GRing.ComUnitRing.zmodType] : GRing.IntegralDomain.type >-> GRing.Zmodule.type
[GRing.IntegralDomain.comUnitRingType; GRing.ComUnitRing.choiceType] : GRing.IntegralDomain.type >-> Choice.type
[GRing.IntegralDomain.comUnitRingType; GRing.ComUnitRing.eqType] : GRing.IntegralDomain.type >-> Equality.type
[GRing.IntegralDomain.comUnitRingType; GRing.ComUnitRing.eqType;
 Equality.sort] : GRing.IntegralDomain.type >-> predArgType
[GRing.IntegralDomain.comUnitRingType; GRing.ComUnitRing.eqType;
 Equality.sort; pred_of_argType; sort_of_simpl_pred] : GRing.IntegralDomain.type >-> pred_sort
[GRing.IntegralDomain.comUnitRingType; GRing.ComUnitRing.eqType;
 Equality.sort; pred_of_argType; collective_pred_of_simpl] : GRing.IntegralDomain.type >-> collective_pred
[GRing.IntegralDomain.comUnitRingType; GRing.ComUnitRing.eqType;
 Equality.sort; pred_of_argType; applicative_pred_of_simpl] : GRing.IntegralDomain.type >-> applicative_pred
[GRing.IntegralDomain.comUnitRingType; GRing.ComUnitRing.eqType;
 Equality.sort; pred_of_argType] : GRing.IntegralDomain.type >-> simpl_pred
[GRing.IntegralDomain.comUnitRingType; GRing.ComUnitRing.eqType;
 Equality.sort; pred_of_argType; pred_of_simpl] : GRing.IntegralDomain.type >-> pred
[GRing.IntegralDomain.comUnitRingType; GRing.ComUnitRing.sort] : GRing.IntegralDomain.type >-> Sortclass
[GRing.IntegralDomain.comUnitRingType; GRing.ComUnitRing.eqType;
 Equality.sort; pred_of_argType; pred_of_simpl; fun_of_pred] : GRing.IntegralDomain.type >-> Funclass
Ambiguous paths:
[GRing.Field.eqType; Equality.sort] : GRing.Field.type >-> Sortclass
Ambiguous paths:
[GRing.Field.choiceType; Choice.eqType] : GRing.Field.type >-> Equality.type
[GRing.Field.choiceType; Choice.eqType; Equality.sort] : GRing.Field.type >-> predArgType
[GRing.Field.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 sort_of_simpl_pred] : GRing.Field.type >-> pred_sort
[GRing.Field.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 collective_pred_of_simpl] : GRing.Field.type >-> collective_pred
[GRing.Field.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 applicative_pred_of_simpl] : GRing.Field.type >-> applicative_pred
[GRing.Field.choiceType; Choice.eqType; Equality.sort; pred_of_argType] : GRing.Field.type >-> simpl_pred
[GRing.Field.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl] : GRing.Field.type >-> pred
[GRing.Field.choiceType; Choice.sort] : GRing.Field.type >-> Sortclass
[GRing.Field.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl; fun_of_pred] : GRing.Field.type >-> Funclass
Ambiguous paths:
[GRing.Field.zmodType; GRing.Zmodule.choiceType] : GRing.Field.type >-> Choice.type
[GRing.Field.zmodType; GRing.Zmodule.eqType] : GRing.Field.type >-> Equality.type
[GRing.Field.zmodType; GRing.Zmodule.eqType; Equality.sort] : GRing.Field.type >-> predArgType
[GRing.Field.zmodType; GRing.Zmodule.eqType; Equality.sort; pred_of_argType;
 sort_of_simpl_pred] : GRing.Field.type >-> pred_sort
[GRing.Field.zmodType; GRing.Zmodule.eqType; Equality.sort; pred_of_argType;
 collective_pred_of_simpl] : GRing.Field.type >-> collective_pred
[GRing.Field.zmodType; GRing.Zmodule.eqType; Equality.sort; pred_of_argType;
 applicative_pred_of_simpl] : GRing.Field.type >-> applicative_pred
[GRing.Field.zmodType; GRing.Zmodule.eqType; Equality.sort; pred_of_argType] : GRing.Field.type >-> simpl_pred
[GRing.Field.zmodType; GRing.Zmodule.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl] : GRing.Field.type >-> pred
[GRing.Field.zmodType; GRing.Zmodule.sort] : GRing.Field.type >-> Sortclass
[GRing.Field.zmodType; GRing.Zmodule.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl; fun_of_pred] : GRing.Field.type >-> Funclass
Ambiguous paths:
[GRing.Field.ringType; GRing.Ring.zmodType] : GRing.Field.type >-> GRing.Zmodule.type
[GRing.Field.ringType; GRing.Ring.choiceType] : GRing.Field.type >-> Choice.type
[GRing.Field.ringType; GRing.Ring.eqType] : GRing.Field.type >-> Equality.type
[GRing.Field.ringType; GRing.Ring.eqType; Equality.sort] : GRing.Field.type >-> predArgType
[GRing.Field.ringType; GRing.Ring.eqType; Equality.sort; pred_of_argType;
 sort_of_simpl_pred] : GRing.Field.type >-> pred_sort
[GRing.Field.ringType; GRing.Ring.eqType; Equality.sort; pred_of_argType;
 collective_pred_of_simpl] : GRing.Field.type >-> collective_pred
[GRing.Field.ringType; GRing.Ring.eqType; Equality.sort; pred_of_argType;
 applicative_pred_of_simpl] : GRing.Field.type >-> applicative_pred
[GRing.Field.ringType; GRing.Ring.eqType; Equality.sort; pred_of_argType] : GRing.Field.type >-> simpl_pred
[GRing.Field.ringType; GRing.Ring.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl] : GRing.Field.type >-> pred
[GRing.Field.ringType; GRing.Ring.sort] : GRing.Field.type >-> Sortclass
[GRing.Field.ringType; GRing.Ring.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl; fun_of_pred] : GRing.Field.type >-> Funclass
Ambiguous paths:
[GRing.Field.comRingType; GRing.ComRing.ringType] : GRing.Field.type >-> GRing.Ring.type
[GRing.Field.comRingType; GRing.ComRing.zmodType] : GRing.Field.type >-> GRing.Zmodule.type
[GRing.Field.comRingType; GRing.ComRing.choiceType] : GRing.Field.type >-> Choice.type
[GRing.Field.comRingType; GRing.ComRing.eqType] : GRing.Field.type >-> Equality.type
[GRing.Field.comRingType; GRing.ComRing.eqType; Equality.sort] : GRing.Field.type >-> predArgType
[GRing.Field.comRingType; GRing.ComRing.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : GRing.Field.type >-> pred_sort
[GRing.Field.comRingType; GRing.ComRing.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : GRing.Field.type >-> collective_pred
[GRing.Field.comRingType; GRing.ComRing.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : GRing.Field.type >-> applicative_pred
[GRing.Field.comRingType; GRing.ComRing.eqType; Equality.sort;
 pred_of_argType] : GRing.Field.type >-> simpl_pred
[GRing.Field.comRingType; GRing.ComRing.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : GRing.Field.type >-> pred
[GRing.Field.comRingType; GRing.ComRing.sort] : GRing.Field.type >-> Sortclass
[GRing.Field.comRingType; GRing.ComRing.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : GRing.Field.type >-> Funclass
Ambiguous paths:
[GRing.Field.unitRingType; GRing.UnitRing.ringType] : GRing.Field.type >-> GRing.Ring.type
[GRing.Field.unitRingType; GRing.UnitRing.zmodType] : GRing.Field.type >-> GRing.Zmodule.type
[GRing.Field.unitRingType; GRing.UnitRing.choiceType] : GRing.Field.type >-> Choice.type
[GRing.Field.unitRingType; GRing.UnitRing.eqType] : GRing.Field.type >-> Equality.type
[GRing.Field.unitRingType; GRing.UnitRing.eqType; Equality.sort] : GRing.Field.type >-> predArgType
[GRing.Field.unitRingType; GRing.UnitRing.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : GRing.Field.type >-> pred_sort
[GRing.Field.unitRingType; GRing.UnitRing.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : GRing.Field.type >-> collective_pred
[GRing.Field.unitRingType; GRing.UnitRing.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : GRing.Field.type >-> applicative_pred
[GRing.Field.unitRingType; GRing.UnitRing.eqType; Equality.sort;
 pred_of_argType] : GRing.Field.type >-> simpl_pred
[GRing.Field.unitRingType; GRing.UnitRing.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : GRing.Field.type >-> pred
[GRing.Field.unitRingType; GRing.UnitRing.sort] : GRing.Field.type >-> Sortclass
[GRing.Field.unitRingType; GRing.UnitRing.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : GRing.Field.type >-> Funclass
Ambiguous paths:
[GRing.Field.comUnitRingType; GRing.ComUnitRing.unitRingType] : GRing.Field.type >-> GRing.UnitRing.type
[GRing.Field.comUnitRingType; GRing.ComUnitRing.comRingType] : GRing.Field.type >-> GRing.ComRing.type
[GRing.Field.comUnitRingType; GRing.ComUnitRing.ringType] : GRing.Field.type >-> GRing.Ring.type
[GRing.Field.comUnitRingType; GRing.ComUnitRing.zmodType] : GRing.Field.type >-> GRing.Zmodule.type
[GRing.Field.comUnitRingType; GRing.ComUnitRing.choiceType] : GRing.Field.type >-> Choice.type
[GRing.Field.comUnitRingType; GRing.ComUnitRing.eqType] : GRing.Field.type >-> Equality.type
[GRing.Field.comUnitRingType; GRing.ComUnitRing.eqType; Equality.sort] : GRing.Field.type >-> predArgType
[GRing.Field.comUnitRingType; GRing.ComUnitRing.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : GRing.Field.type >-> pred_sort
[GRing.Field.comUnitRingType; GRing.ComUnitRing.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : GRing.Field.type >-> collective_pred
[GRing.Field.comUnitRingType; GRing.ComUnitRing.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : GRing.Field.type >-> applicative_pred
[GRing.Field.comUnitRingType; GRing.ComUnitRing.eqType; Equality.sort;
 pred_of_argType] : GRing.Field.type >-> simpl_pred
[GRing.Field.comUnitRingType; GRing.ComUnitRing.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : GRing.Field.type >-> pred
[GRing.Field.comUnitRingType; GRing.ComUnitRing.sort] : GRing.Field.type >-> Sortclass
[GRing.Field.comUnitRingType; GRing.ComUnitRing.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : GRing.Field.type >-> Funclass
Ambiguous paths:
[GRing.Field.idomainType; GRing.IntegralDomain.comUnitRingType] : GRing.Field.type >-> GRing.ComUnitRing.type
[GRing.Field.idomainType; GRing.IntegralDomain.unitRingType] : GRing.Field.type >-> GRing.UnitRing.type
[GRing.Field.idomainType; GRing.IntegralDomain.comRingType] : GRing.Field.type >-> GRing.ComRing.type
[GRing.Field.idomainType; GRing.IntegralDomain.ringType] : GRing.Field.type >-> GRing.Ring.type
[GRing.Field.idomainType; GRing.IntegralDomain.zmodType] : GRing.Field.type >-> GRing.Zmodule.type
[GRing.Field.idomainType; GRing.IntegralDomain.choiceType] : GRing.Field.type >-> Choice.type
[GRing.Field.idomainType; GRing.IntegralDomain.eqType] : GRing.Field.type >-> Equality.type
[GRing.Field.idomainType; GRing.IntegralDomain.eqType; Equality.sort] : GRing.Field.type >-> predArgType
[GRing.Field.idomainType; GRing.IntegralDomain.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : GRing.Field.type >-> pred_sort
[GRing.Field.idomainType; GRing.IntegralDomain.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : GRing.Field.type >-> collective_pred
[GRing.Field.idomainType; GRing.IntegralDomain.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : GRing.Field.type >-> applicative_pred
[GRing.Field.idomainType; GRing.IntegralDomain.eqType; Equality.sort;
 pred_of_argType] : GRing.Field.type >-> simpl_pred
[GRing.Field.idomainType; GRing.IntegralDomain.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : GRing.Field.type >-> pred
[GRing.Field.idomainType; GRing.IntegralDomain.sort] : GRing.Field.type >-> Sortclass
[GRing.Field.idomainType; GRing.IntegralDomain.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : GRing.Field.type >-> Funclass
Ambiguous paths:
[GRing.DecidableField.eqType; Equality.sort] : GRing.DecidableField.type >-> Sortclass
Ambiguous paths:
[GRing.DecidableField.choiceType; Choice.eqType] : GRing.DecidableField.type >-> Equality.type
[GRing.DecidableField.choiceType; Choice.eqType; Equality.sort] : GRing.DecidableField.type >-> predArgType
[GRing.DecidableField.choiceType; Choice.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : GRing.DecidableField.type >-> pred_sort
[GRing.DecidableField.choiceType; Choice.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : GRing.DecidableField.type >-> collective_pred
[GRing.DecidableField.choiceType; Choice.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : GRing.DecidableField.type >-> applicative_pred
[GRing.DecidableField.choiceType; Choice.eqType; Equality.sort;
 pred_of_argType] : GRing.DecidableField.type >-> simpl_pred
[GRing.DecidableField.choiceType; Choice.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : GRing.DecidableField.type >-> pred
[GRing.DecidableField.choiceType; Choice.sort] : GRing.DecidableField.type >-> Sortclass
[GRing.DecidableField.choiceType; Choice.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : GRing.DecidableField.type >-> Funclass
Ambiguous paths:
[GRing.DecidableField.zmodType; GRing.Zmodule.choiceType] : GRing.DecidableField.type >-> Choice.type
[GRing.DecidableField.zmodType; GRing.Zmodule.eqType] : GRing.DecidableField.type >-> Equality.type
[GRing.DecidableField.zmodType; GRing.Zmodule.eqType; Equality.sort] : GRing.DecidableField.type >-> predArgType
[GRing.DecidableField.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : GRing.DecidableField.type >-> pred_sort
[GRing.DecidableField.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : GRing.DecidableField.type >-> collective_pred
[GRing.DecidableField.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : GRing.DecidableField.type >-> applicative_pred
[GRing.DecidableField.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType] : GRing.DecidableField.type >-> simpl_pred
[GRing.DecidableField.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : GRing.DecidableField.type >-> pred
[GRing.DecidableField.zmodType; GRing.Zmodule.sort] : GRing.DecidableField.type >-> Sortclass
[GRing.DecidableField.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : GRing.DecidableField.type >-> Funclass
Ambiguous paths:
[GRing.DecidableField.ringType; GRing.Ring.zmodType] : GRing.DecidableField.type >-> GRing.Zmodule.type
[GRing.DecidableField.ringType; GRing.Ring.choiceType] : GRing.DecidableField.type >-> Choice.type
[GRing.DecidableField.ringType; GRing.Ring.eqType] : GRing.DecidableField.type >-> Equality.type
[GRing.DecidableField.ringType; GRing.Ring.eqType; Equality.sort] : GRing.DecidableField.type >-> predArgType
[GRing.DecidableField.ringType; GRing.Ring.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : GRing.DecidableField.type >-> pred_sort
[GRing.DecidableField.ringType; GRing.Ring.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : GRing.DecidableField.type >-> collective_pred
[GRing.DecidableField.ringType; GRing.Ring.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : GRing.DecidableField.type >-> applicative_pred
[GRing.DecidableField.ringType; GRing.Ring.eqType; Equality.sort;
 pred_of_argType] : GRing.DecidableField.type >-> simpl_pred
[GRing.DecidableField.ringType; GRing.Ring.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : GRing.DecidableField.type >-> pred
[GRing.DecidableField.ringType; GRing.Ring.sort] : GRing.DecidableField.type >-> Sortclass
[GRing.DecidableField.ringType; GRing.Ring.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : GRing.DecidableField.type >-> Funclass
Ambiguous paths:
[GRing.DecidableField.comRingType; GRing.ComRing.ringType] : GRing.DecidableField.type >-> GRing.Ring.type
[GRing.DecidableField.comRingType; GRing.ComRing.zmodType] : GRing.DecidableField.type >-> GRing.Zmodule.type
[GRing.DecidableField.comRingType; GRing.ComRing.choiceType] : GRing.DecidableField.type >-> Choice.type
[GRing.DecidableField.comRingType; GRing.ComRing.eqType] : GRing.DecidableField.type >-> Equality.type
[GRing.DecidableField.comRingType; GRing.ComRing.eqType; Equality.sort] : GRing.DecidableField.type >-> predArgType
[GRing.DecidableField.comRingType; GRing.ComRing.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : GRing.DecidableField.type >-> pred_sort
[GRing.DecidableField.comRingType; GRing.ComRing.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : GRing.DecidableField.type >-> collective_pred
[GRing.DecidableField.comRingType; GRing.ComRing.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : GRing.DecidableField.type >-> applicative_pred
[GRing.DecidableField.comRingType; GRing.ComRing.eqType; Equality.sort;
 pred_of_argType] : GRing.DecidableField.type >-> simpl_pred
[GRing.DecidableField.comRingType; GRing.ComRing.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : GRing.DecidableField.type >-> pred
[GRing.DecidableField.comRingType; GRing.ComRing.sort] : GRing.DecidableField.type >-> Sortclass
[GRing.DecidableField.comRingType; GRing.ComRing.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : GRing.DecidableField.type >-> Funclass
Ambiguous paths:
[GRing.DecidableField.unitRingType; GRing.UnitRing.ringType] : GRing.DecidableField.type >-> GRing.Ring.type
[GRing.DecidableField.unitRingType; GRing.UnitRing.zmodType] : GRing.DecidableField.type >-> GRing.Zmodule.type
[GRing.DecidableField.unitRingType; GRing.UnitRing.choiceType] : GRing.DecidableField.type >-> Choice.type
[GRing.DecidableField.unitRingType; GRing.UnitRing.eqType] : GRing.DecidableField.type >-> Equality.type
[GRing.DecidableField.unitRingType; GRing.UnitRing.eqType; Equality.sort] : GRing.DecidableField.type >-> predArgType
[GRing.DecidableField.unitRingType; GRing.UnitRing.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : GRing.DecidableField.type >-> pred_sort
[GRing.DecidableField.unitRingType; GRing.UnitRing.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : GRing.DecidableField.type >-> collective_pred
[GRing.DecidableField.unitRingType; GRing.UnitRing.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : GRing.DecidableField.type >-> applicative_pred
[GRing.DecidableField.unitRingType; GRing.UnitRing.eqType; Equality.sort;
 pred_of_argType] : GRing.DecidableField.type >-> simpl_pred
[GRing.DecidableField.unitRingType; GRing.UnitRing.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : GRing.DecidableField.type >-> pred
[GRing.DecidableField.unitRingType; GRing.UnitRing.sort] : GRing.DecidableField.type >-> Sortclass
[GRing.DecidableField.unitRingType; GRing.UnitRing.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : GRing.DecidableField.type >-> Funclass
Ambiguous paths:
[GRing.DecidableField.comUnitRingType; GRing.ComUnitRing.unitRingType] : GRing.DecidableField.type >-> GRing.UnitRing.type
[GRing.DecidableField.comUnitRingType; GRing.ComUnitRing.comRingType] : GRing.DecidableField.type >-> GRing.ComRing.type
[GRing.DecidableField.comUnitRingType; GRing.ComUnitRing.ringType] : GRing.DecidableField.type >-> GRing.Ring.type
[GRing.DecidableField.comUnitRingType; GRing.ComUnitRing.zmodType] : GRing.DecidableField.type >-> GRing.Zmodule.type
[GRing.DecidableField.comUnitRingType; GRing.ComUnitRing.choiceType] : GRing.DecidableField.type >-> Choice.type
[GRing.DecidableField.comUnitRingType; GRing.ComUnitRing.eqType] : GRing.DecidableField.type >-> Equality.type
[GRing.DecidableField.comUnitRingType; GRing.ComUnitRing.eqType;
 Equality.sort] : GRing.DecidableField.type >-> predArgType
[GRing.DecidableField.comUnitRingType; GRing.ComUnitRing.eqType;
 Equality.sort; pred_of_argType; sort_of_simpl_pred] : GRing.DecidableField.type >-> pred_sort
[GRing.DecidableField.comUnitRingType; GRing.ComUnitRing.eqType;
 Equality.sort; pred_of_argType; collective_pred_of_simpl] : GRing.DecidableField.type >-> collective_pred
[GRing.DecidableField.comUnitRingType; GRing.ComUnitRing.eqType;
 Equality.sort; pred_of_argType; applicative_pred_of_simpl] : GRing.DecidableField.type >-> applicative_pred
[GRing.DecidableField.comUnitRingType; GRing.ComUnitRing.eqType;
 Equality.sort; pred_of_argType] : GRing.DecidableField.type >-> simpl_pred
[GRing.DecidableField.comUnitRingType; GRing.ComUnitRing.eqType;
 Equality.sort; pred_of_argType; pred_of_simpl] : GRing.DecidableField.type >-> pred
[GRing.DecidableField.comUnitRingType; GRing.ComUnitRing.sort] : GRing.DecidableField.type >-> Sortclass
[GRing.DecidableField.comUnitRingType; GRing.ComUnitRing.eqType;
 Equality.sort; pred_of_argType; pred_of_simpl; fun_of_pred] : GRing.DecidableField.type >-> Funclass
Ambiguous paths:
[GRing.DecidableField.idomainType; GRing.IntegralDomain.comUnitRingType] : GRing.DecidableField.type >-> GRing.ComUnitRing.type
[GRing.DecidableField.idomainType; GRing.IntegralDomain.unitRingType] : GRing.DecidableField.type >-> GRing.UnitRing.type
[GRing.DecidableField.idomainType; GRing.IntegralDomain.comRingType] : GRing.DecidableField.type >-> GRing.ComRing.type
[GRing.DecidableField.idomainType; GRing.IntegralDomain.ringType] : GRing.DecidableField.type >-> GRing.Ring.type
[GRing.DecidableField.idomainType; GRing.IntegralDomain.zmodType] : GRing.DecidableField.type >-> GRing.Zmodule.type
[GRing.DecidableField.idomainType; GRing.IntegralDomain.choiceType] : GRing.DecidableField.type >-> Choice.type
[GRing.DecidableField.idomainType; GRing.IntegralDomain.eqType] : GRing.DecidableField.type >-> Equality.type
[GRing.DecidableField.idomainType; GRing.IntegralDomain.eqType; Equality.sort] : GRing.DecidableField.type >-> predArgType
[GRing.DecidableField.idomainType; GRing.IntegralDomain.eqType;
 Equality.sort; pred_of_argType; sort_of_simpl_pred] : GRing.DecidableField.type >-> pred_sort
[GRing.DecidableField.idomainType; GRing.IntegralDomain.eqType;
 Equality.sort; pred_of_argType; collective_pred_of_simpl] : GRing.DecidableField.type >-> collective_pred
[GRing.DecidableField.idomainType; GRing.IntegralDomain.eqType;
 Equality.sort; pred_of_argType; applicative_pred_of_simpl] : GRing.DecidableField.type >-> applicative_pred
[GRing.DecidableField.idomainType; GRing.IntegralDomain.eqType;
 Equality.sort; pred_of_argType] : GRing.DecidableField.type >-> simpl_pred
[GRing.DecidableField.idomainType; GRing.IntegralDomain.eqType;
 Equality.sort; pred_of_argType; pred_of_simpl] : GRing.DecidableField.type >-> pred
[GRing.DecidableField.idomainType; GRing.IntegralDomain.sort] : GRing.DecidableField.type >-> Sortclass
[GRing.DecidableField.idomainType; GRing.IntegralDomain.eqType;
 Equality.sort; pred_of_argType; pred_of_simpl; fun_of_pred] : GRing.DecidableField.type >-> Funclass
Ambiguous paths:
[GRing.DecidableField.fieldType; GRing.Field.idomainType] : GRing.DecidableField.type >-> GRing.IntegralDomain.type
[GRing.DecidableField.fieldType; GRing.Field.comUnitRingType] : GRing.DecidableField.type >-> GRing.ComUnitRing.type
[GRing.DecidableField.fieldType; GRing.Field.unitRingType] : GRing.DecidableField.type >-> GRing.UnitRing.type
[GRing.DecidableField.fieldType; GRing.Field.comRingType] : GRing.DecidableField.type >-> GRing.ComRing.type
[GRing.DecidableField.fieldType; GRing.Field.ringType] : GRing.DecidableField.type >-> GRing.Ring.type
[GRing.DecidableField.fieldType; GRing.Field.zmodType] : GRing.DecidableField.type >-> GRing.Zmodule.type
[GRing.DecidableField.fieldType; GRing.Field.choiceType] : GRing.DecidableField.type >-> Choice.type
[GRing.DecidableField.fieldType; GRing.Field.eqType] : GRing.DecidableField.type >-> Equality.type
[GRing.DecidableField.fieldType; GRing.Field.eqType; Equality.sort] : GRing.DecidableField.type >-> predArgType
[GRing.DecidableField.fieldType; GRing.Field.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : GRing.DecidableField.type >-> pred_sort
[GRing.DecidableField.fieldType; GRing.Field.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : GRing.DecidableField.type >-> collective_pred
[GRing.DecidableField.fieldType; GRing.Field.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : GRing.DecidableField.type >-> applicative_pred
[GRing.DecidableField.fieldType; GRing.Field.eqType; Equality.sort;
 pred_of_argType] : GRing.DecidableField.type >-> simpl_pred
[GRing.DecidableField.fieldType; GRing.Field.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : GRing.DecidableField.type >-> pred
[GRing.DecidableField.fieldType; GRing.Field.sort] : GRing.DecidableField.type >-> Sortclass
[GRing.DecidableField.fieldType; GRing.Field.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : GRing.DecidableField.type >-> Funclass
Ambiguous paths:
[GRing.ClosedField.eqType; Equality.sort] : GRing.ClosedField.type >-> Sortclass
Ambiguous paths:
[GRing.ClosedField.choiceType; Choice.eqType] : GRing.ClosedField.type >-> Equality.type
[GRing.ClosedField.choiceType; Choice.eqType; Equality.sort] : GRing.ClosedField.type >-> predArgType
[GRing.ClosedField.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 sort_of_simpl_pred] : GRing.ClosedField.type >-> pred_sort
[GRing.ClosedField.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 collective_pred_of_simpl] : GRing.ClosedField.type >-> collective_pred
[GRing.ClosedField.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 applicative_pred_of_simpl] : GRing.ClosedField.type >-> applicative_pred
[GRing.ClosedField.choiceType; Choice.eqType; Equality.sort; pred_of_argType] : GRing.ClosedField.type >-> simpl_pred
[GRing.ClosedField.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl] : GRing.ClosedField.type >-> pred
[GRing.ClosedField.choiceType; Choice.sort] : GRing.ClosedField.type >-> Sortclass
[GRing.ClosedField.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl; fun_of_pred] : GRing.ClosedField.type >-> Funclass
Ambiguous paths:
[GRing.ClosedField.zmodType; GRing.Zmodule.choiceType] : GRing.ClosedField.type >-> Choice.type
[GRing.ClosedField.zmodType; GRing.Zmodule.eqType] : GRing.ClosedField.type >-> Equality.type
[GRing.ClosedField.zmodType; GRing.Zmodule.eqType; Equality.sort] : GRing.ClosedField.type >-> predArgType
[GRing.ClosedField.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : GRing.ClosedField.type >-> pred_sort
[GRing.ClosedField.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : GRing.ClosedField.type >-> collective_pred
[GRing.ClosedField.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : GRing.ClosedField.type >-> applicative_pred
[GRing.ClosedField.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType] : GRing.ClosedField.type >-> simpl_pred
[GRing.ClosedField.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : GRing.ClosedField.type >-> pred
[GRing.ClosedField.zmodType; GRing.Zmodule.sort] : GRing.ClosedField.type >-> Sortclass
[GRing.ClosedField.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : GRing.ClosedField.type >-> Funclass
Ambiguous paths:
[GRing.ClosedField.ringType; GRing.Ring.zmodType] : GRing.ClosedField.type >-> GRing.Zmodule.type
[GRing.ClosedField.ringType; GRing.Ring.choiceType] : GRing.ClosedField.type >-> Choice.type
[GRing.ClosedField.ringType; GRing.Ring.eqType] : GRing.ClosedField.type >-> Equality.type
[GRing.ClosedField.ringType; GRing.Ring.eqType; Equality.sort] : GRing.ClosedField.type >-> predArgType
[GRing.ClosedField.ringType; GRing.Ring.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : GRing.ClosedField.type >-> pred_sort
[GRing.ClosedField.ringType; GRing.Ring.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : GRing.ClosedField.type >-> collective_pred
[GRing.ClosedField.ringType; GRing.Ring.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : GRing.ClosedField.type >-> applicative_pred
[GRing.ClosedField.ringType; GRing.Ring.eqType; Equality.sort;
 pred_of_argType] : GRing.ClosedField.type >-> simpl_pred
[GRing.ClosedField.ringType; GRing.Ring.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : GRing.ClosedField.type >-> pred
[GRing.ClosedField.ringType; GRing.Ring.sort] : GRing.ClosedField.type >-> Sortclass
[GRing.ClosedField.ringType; GRing.Ring.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : GRing.ClosedField.type >-> Funclass
Ambiguous paths:
[GRing.ClosedField.comRingType; GRing.ComRing.ringType] : GRing.ClosedField.type >-> GRing.Ring.type
[GRing.ClosedField.comRingType; GRing.ComRing.zmodType] : GRing.ClosedField.type >-> GRing.Zmodule.type
[GRing.ClosedField.comRingType; GRing.ComRing.choiceType] : GRing.ClosedField.type >-> Choice.type
[GRing.ClosedField.comRingType; GRing.ComRing.eqType] : GRing.ClosedField.type >-> Equality.type
[GRing.ClosedField.comRingType; GRing.ComRing.eqType; Equality.sort] : GRing.ClosedField.type >-> predArgType
[GRing.ClosedField.comRingType; GRing.ComRing.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : GRing.ClosedField.type >-> pred_sort
[GRing.ClosedField.comRingType; GRing.ComRing.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : GRing.ClosedField.type >-> collective_pred
[GRing.ClosedField.comRingType; GRing.ComRing.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : GRing.ClosedField.type >-> applicative_pred
[GRing.ClosedField.comRingType; GRing.ComRing.eqType; Equality.sort;
 pred_of_argType] : GRing.ClosedField.type >-> simpl_pred
[GRing.ClosedField.comRingType; GRing.ComRing.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : GRing.ClosedField.type >-> pred
[GRing.ClosedField.comRingType; GRing.ComRing.sort] : GRing.ClosedField.type >-> Sortclass
[GRing.ClosedField.comRingType; GRing.ComRing.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : GRing.ClosedField.type >-> Funclass
Ambiguous paths:
[GRing.ClosedField.unitRingType; GRing.UnitRing.ringType] : GRing.ClosedField.type >-> GRing.Ring.type
[GRing.ClosedField.unitRingType; GRing.UnitRing.zmodType] : GRing.ClosedField.type >-> GRing.Zmodule.type
[GRing.ClosedField.unitRingType; GRing.UnitRing.choiceType] : GRing.ClosedField.type >-> Choice.type
[GRing.ClosedField.unitRingType; GRing.UnitRing.eqType] : GRing.ClosedField.type >-> Equality.type
[GRing.ClosedField.unitRingType; GRing.UnitRing.eqType; Equality.sort] : GRing.ClosedField.type >-> predArgType
[GRing.ClosedField.unitRingType; GRing.UnitRing.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : GRing.ClosedField.type >-> pred_sort
[GRing.ClosedField.unitRingType; GRing.UnitRing.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : GRing.ClosedField.type >-> collective_pred
[GRing.ClosedField.unitRingType; GRing.UnitRing.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : GRing.ClosedField.type >-> applicative_pred
[GRing.ClosedField.unitRingType; GRing.UnitRing.eqType; Equality.sort;
 pred_of_argType] : GRing.ClosedField.type >-> simpl_pred
[GRing.ClosedField.unitRingType; GRing.UnitRing.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : GRing.ClosedField.type >-> pred
[GRing.ClosedField.unitRingType; GRing.UnitRing.sort] : GRing.ClosedField.type >-> Sortclass
[GRing.ClosedField.unitRingType; GRing.UnitRing.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : GRing.ClosedField.type >-> Funclass
Ambiguous paths:
[GRing.ClosedField.comUnitRingType; GRing.ComUnitRing.unitRingType] : GRing.ClosedField.type >-> GRing.UnitRing.type
[GRing.ClosedField.comUnitRingType; GRing.ComUnitRing.comRingType] : GRing.ClosedField.type >-> GRing.ComRing.type
[GRing.ClosedField.comUnitRingType; GRing.ComUnitRing.ringType] : GRing.ClosedField.type >-> GRing.Ring.type
[GRing.ClosedField.comUnitRingType; GRing.ComUnitRing.zmodType] : GRing.ClosedField.type >-> GRing.Zmodule.type
[GRing.ClosedField.comUnitRingType; GRing.ComUnitRing.choiceType] : GRing.ClosedField.type >-> Choice.type
[GRing.ClosedField.comUnitRingType; GRing.ComUnitRing.eqType] : GRing.ClosedField.type >-> Equality.type
[GRing.ClosedField.comUnitRingType; GRing.ComUnitRing.eqType; Equality.sort] : GRing.ClosedField.type >-> predArgType
[GRing.ClosedField.comUnitRingType; GRing.ComUnitRing.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : GRing.ClosedField.type >-> pred_sort
[GRing.ClosedField.comUnitRingType; GRing.ComUnitRing.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : GRing.ClosedField.type >-> collective_pred
[GRing.ClosedField.comUnitRingType; GRing.ComUnitRing.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : GRing.ClosedField.type >-> applicative_pred
[GRing.ClosedField.comUnitRingType; GRing.ComUnitRing.eqType; Equality.sort;
 pred_of_argType] : GRing.ClosedField.type >-> simpl_pred
[GRing.ClosedField.comUnitRingType; GRing.ComUnitRing.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : GRing.ClosedField.type >-> pred
[GRing.ClosedField.comUnitRingType; GRing.ComUnitRing.sort] : GRing.ClosedField.type >-> Sortclass
[GRing.ClosedField.comUnitRingType; GRing.ComUnitRing.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : GRing.ClosedField.type >-> Funclass
Ambiguous paths:
[GRing.ClosedField.idomainType; GRing.IntegralDomain.comUnitRingType] : GRing.ClosedField.type >-> GRing.ComUnitRing.type
[GRing.ClosedField.idomainType; GRing.IntegralDomain.unitRingType] : GRing.ClosedField.type >-> GRing.UnitRing.type
[GRing.ClosedField.idomainType; GRing.IntegralDomain.comRingType] : GRing.ClosedField.type >-> GRing.ComRing.type
[GRing.ClosedField.idomainType; GRing.IntegralDomain.ringType] : GRing.ClosedField.type >-> GRing.Ring.type
[GRing.ClosedField.idomainType; GRing.IntegralDomain.zmodType] : GRing.ClosedField.type >-> GRing.Zmodule.type
[GRing.ClosedField.idomainType; GRing.IntegralDomain.choiceType] : GRing.ClosedField.type >-> Choice.type
[GRing.ClosedField.idomainType; GRing.IntegralDomain.eqType] : GRing.ClosedField.type >-> Equality.type
[GRing.ClosedField.idomainType; GRing.IntegralDomain.eqType; Equality.sort] : GRing.ClosedField.type >-> predArgType
[GRing.ClosedField.idomainType; GRing.IntegralDomain.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : GRing.ClosedField.type >-> pred_sort
[GRing.ClosedField.idomainType; GRing.IntegralDomain.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : GRing.ClosedField.type >-> collective_pred
[GRing.ClosedField.idomainType; GRing.IntegralDomain.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : GRing.ClosedField.type >-> applicative_pred
[GRing.ClosedField.idomainType; GRing.IntegralDomain.eqType; Equality.sort;
 pred_of_argType] : GRing.ClosedField.type >-> simpl_pred
[GRing.ClosedField.idomainType; GRing.IntegralDomain.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : GRing.ClosedField.type >-> pred
[GRing.ClosedField.idomainType; GRing.IntegralDomain.sort] : GRing.ClosedField.type >-> Sortclass
[GRing.ClosedField.idomainType; GRing.IntegralDomain.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : GRing.ClosedField.type >-> Funclass
Ambiguous paths:
[GRing.ClosedField.fieldType; GRing.Field.idomainType] : GRing.ClosedField.type >-> GRing.IntegralDomain.type
[GRing.ClosedField.fieldType; GRing.Field.comUnitRingType] : GRing.ClosedField.type >-> GRing.ComUnitRing.type
[GRing.ClosedField.fieldType; GRing.Field.unitRingType] : GRing.ClosedField.type >-> GRing.UnitRing.type
[GRing.ClosedField.fieldType; GRing.Field.comRingType] : GRing.ClosedField.type >-> GRing.ComRing.type
[GRing.ClosedField.fieldType; GRing.Field.ringType] : GRing.ClosedField.type >-> GRing.Ring.type
[GRing.ClosedField.fieldType; GRing.Field.zmodType] : GRing.ClosedField.type >-> GRing.Zmodule.type
[GRing.ClosedField.fieldType; GRing.Field.choiceType] : GRing.ClosedField.type >-> Choice.type
[GRing.ClosedField.fieldType; GRing.Field.eqType] : GRing.ClosedField.type >-> Equality.type
[GRing.ClosedField.fieldType; GRing.Field.eqType; Equality.sort] : GRing.ClosedField.type >-> predArgType
[GRing.ClosedField.fieldType; GRing.Field.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : GRing.ClosedField.type >-> pred_sort
[GRing.ClosedField.fieldType; GRing.Field.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : GRing.ClosedField.type >-> collective_pred
[GRing.ClosedField.fieldType; GRing.Field.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : GRing.ClosedField.type >-> applicative_pred
[GRing.ClosedField.fieldType; GRing.Field.eqType; Equality.sort;
 pred_of_argType] : GRing.ClosedField.type >-> simpl_pred
[GRing.ClosedField.fieldType; GRing.Field.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : GRing.ClosedField.type >-> pred
[GRing.ClosedField.fieldType; GRing.Field.sort] : GRing.ClosedField.type >-> Sortclass
[GRing.ClosedField.fieldType; GRing.Field.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : GRing.ClosedField.type >-> Funclass
Ambiguous paths:
[GRing.ClosedField.decFieldType; GRing.DecidableField.fieldType] : GRing.ClosedField.type >-> GRing.Field.type
[GRing.ClosedField.decFieldType; GRing.DecidableField.idomainType] : GRing.ClosedField.type >-> GRing.IntegralDomain.type
[GRing.ClosedField.decFieldType; GRing.DecidableField.comUnitRingType] : GRing.ClosedField.type >-> GRing.ComUnitRing.type
[GRing.ClosedField.decFieldType; GRing.DecidableField.unitRingType] : GRing.ClosedField.type >-> GRing.UnitRing.type
[GRing.ClosedField.decFieldType; GRing.DecidableField.comRingType] : GRing.ClosedField.type >-> GRing.ComRing.type
[GRing.ClosedField.decFieldType; GRing.DecidableField.ringType] : GRing.ClosedField.type >-> GRing.Ring.type
[GRing.ClosedField.decFieldType; GRing.DecidableField.zmodType] : GRing.ClosedField.type >-> GRing.Zmodule.type
[GRing.ClosedField.decFieldType; GRing.DecidableField.choiceType] : GRing.ClosedField.type >-> Choice.type
[GRing.ClosedField.decFieldType; GRing.DecidableField.eqType] : GRing.ClosedField.type >-> Equality.type
[GRing.ClosedField.decFieldType; GRing.DecidableField.eqType; Equality.sort] : GRing.ClosedField.type >-> predArgType
[GRing.ClosedField.decFieldType; GRing.DecidableField.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : GRing.ClosedField.type >-> pred_sort
[GRing.ClosedField.decFieldType; GRing.DecidableField.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : GRing.ClosedField.type >-> collective_pred
[GRing.ClosedField.decFieldType; GRing.DecidableField.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : GRing.ClosedField.type >-> applicative_pred
[GRing.ClosedField.decFieldType; GRing.DecidableField.eqType; Equality.sort;
 pred_of_argType] : GRing.ClosedField.type >-> simpl_pred
[GRing.ClosedField.decFieldType; GRing.DecidableField.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : GRing.ClosedField.type >-> pred
[GRing.ClosedField.decFieldType; GRing.DecidableField.sort] : GRing.ClosedField.type >-> Sortclass
[GRing.ClosedField.decFieldType; GRing.DecidableField.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : GRing.ClosedField.type >-> Funclass
Ambiguous paths:
[GRing.subring_closedM; GRing.smulr_closedN] : GRing.subring_closed >-> GRing.oppr_closed
Ambiguous paths:
[GRing.subring_closed_semi; GRing.semiring_closedM] : GRing.subring_closed >-> GRing.mulr_closed
[GRing.subring_closed_semi; GRing.semiring_closedD] : GRing.subring_closed >-> GRing.addr_closed
Ambiguous paths:
[GRing.sdivr_closed_div; GRing.divr_closedM] : GRing.sdivr_closed >-> GRing.mulr_closed
Ambiguous paths:
[GRing.subalg_closedBM; GRing.subring_closedB; GRing.zmod_closedN] : GRing.subalg_closed >-> GRing.oppr_closed
[GRing.subalg_closedBM; GRing.subring_closedB; GRing.zmod_closedD] : GRing.subalg_closed >-> GRing.addr_closed
[GRing.subalg_closedBM; GRing.subring_closedB] : GRing.subalg_closed >-> GRing.zmod_closed
Ambiguous paths:
[GRing.divring_closed_div; GRing.sdivr_closedM; GRing.smulr_closedM] : GRing.divring_closed >-> GRing.mulr_closed
[GRing.divring_closed_div; GRing.sdivr_closedM] : GRing.divring_closed >-> GRing.smulr_closed
[GRing.divring_closed_div; GRing.sdivr_closedM; GRing.smulr_closedN] : GRing.divring_closed >-> GRing.oppr_closed
Ambiguous paths:
[GRing.divalg_closedBdiv; GRing.divring_closedBM] : GRing.divalg_closed >-> GRing.subring_closed
[GRing.divalg_closedBdiv; GRing.divring_closedBM; GRing.subring_closed_semi] : GRing.divalg_closed >-> GRing.semiring_closed
[GRing.divalg_closedBdiv; GRing.divring_closedBM; GRing.subring_closedM;
 GRing.smulr_closedM] : GRing.divalg_closed >-> GRing.mulr_closed
[GRing.divalg_closedBdiv; GRing.divring_closedBM; GRing.subring_closedM] : GRing.divalg_closed >-> GRing.smulr_closed
[GRing.divalg_closedBdiv; GRing.divring_closedBM; GRing.subring_closedB;
 GRing.zmod_closedN] : GRing.divalg_closed >-> GRing.oppr_closed
[GRing.divalg_closedBdiv; GRing.divring_closedBM; GRing.subring_closedB;
 GRing.zmod_closedD] : GRing.divalg_closed >-> GRing.addr_closed
[GRing.divalg_closedBdiv; GRing.divring_closedBM; GRing.subring_closedB] : GRing.divalg_closed >-> GRing.zmod_closed
Ambiguous paths:
[GRing.Pred.zmod_add; GRing.Pred.add_key] : GRing.Pred.zmod >-> pred_key
Ambiguous paths:
[GRing.Pred.semiring_mul; GRing.Pred.mul_key] : GRing.Pred.semiring >-> pred_key
Ambiguous paths:
[GRing.Pred.smul_mul; GRing.Pred.mul_key] : GRing.Pred.smul >-> pred_key
Ambiguous paths:
[GRing.Pred.subring_semi; GRing.Pred.semiring_add] : GRing.Pred.subring >-> GRing.Pred.add
[GRing.Pred.subring_semi; GRing.Pred.semiring_add; GRing.Pred.add_key] : GRing.Pred.subring >-> pred_key
Ambiguous paths:
[GRing.Pred.subring_smul; GRing.Pred.smul_mul] : GRing.Pred.subring >-> GRing.Pred.mul
[GRing.Pred.subring_smul; GRing.Pred.smul_opp; GRing.Pred.opp_key] : GRing.Pred.subring >-> pred_key
[GRing.Pred.subring_smul; GRing.Pred.smul_opp] : GRing.Pred.subring >-> GRing.Pred.opp
Ambiguous paths:
[GRing.Pred.sdiv_div; GRing.Pred.div_mul] : GRing.Pred.sdiv >-> GRing.Pred.mul
[GRing.Pred.sdiv_div; GRing.Pred.div_mul; GRing.Pred.mul_key] : GRing.Pred.sdiv >-> pred_key
Ambiguous paths:
[GRing.Pred.subalg_ring; GRing.Pred.subring_zmod] : GRing.Pred.subalg >-> GRing.Pred.zmod
[GRing.Pred.subalg_ring; GRing.Pred.subring_zmod; GRing.Pred.zmod_add] : GRing.Pred.subalg >-> GRing.Pred.add
[GRing.Pred.subalg_ring; GRing.Pred.subring_zmod; GRing.Pred.zmod_opp;
 GRing.Pred.opp_key] : GRing.Pred.subalg >-> pred_key
[GRing.Pred.subalg_ring; GRing.Pred.subring_zmod; GRing.Pred.zmod_opp] : GRing.Pred.subalg >-> GRing.Pred.opp
Ambiguous paths:
[GRing.Pred.divring_sdiv; GRing.Pred.sdiv_smul] : GRing.Pred.divring >-> GRing.Pred.smul
[GRing.Pred.divring_sdiv; GRing.Pred.sdiv_smul; GRing.Pred.smul_mul] : GRing.Pred.divring >-> GRing.Pred.mul
[GRing.Pred.divring_sdiv; GRing.Pred.sdiv_smul; GRing.Pred.smul_opp;
 GRing.Pred.opp_key] : GRing.Pred.divring >-> pred_key
[GRing.Pred.divring_sdiv; GRing.Pred.sdiv_smul; GRing.Pred.smul_opp] : GRing.Pred.divring >-> GRing.Pred.opp
Ambiguous paths:
[GRing.Pred.divalg_ring; GRing.Pred.divring_ring] : GRing.Pred.divalg >-> GRing.Pred.subring
[GRing.Pred.dWarning: Ignoring canonical projection to finfun_of by GRing.Zmodule.sort in exp_zmodType: redundant with ffun_zmodType
Warning: Ignoring canonical projection to finfun_of by GRing.Lmodule.sort in exp_lmodType: redundant with ffun_lmodType
Warning: No global reference exists for projection value
 fun (x : {ffun pred _UNBOUND_REL_1}) (_ : xpredT x) =>
 FinSet (T:=_UNBOUND_REL_3) x in instance set_subType of Sub, ignoring it.
Warning: No global reference exists for projection value
 unkeyed (set_type _UNBOUND_REL_1) in instance set_predType of pred_sort, ignoring it.
Warning: No global reference exists for projection value
 fun (x : {ffun pred _UNBOUND_REL_1}) (_ : xpredT x) =>
 FinSet (T:=_UNBOUND_REL_3) x in instance set_of_subType of Sub, ignoring it.
Warning: Ignoring canonical projection to finfun_of_set by val in set_of_subType: redundant with set_subType
ivalg_ring; GRing.Pred.divring_ring; GRing.Pred.subring_smul] : GRing.Pred.divalg >-> GRing.Pred.smul
[GRing.Pred.divalg_ring; GRing.Pred.divring_ring; GRing.Pred.subring_semi] : GRing.Pred.divalg >-> GRing.Pred.semiring
[GRing.Pred.divalg_ring; GRing.Pred.divring_ring; GRing.Pred.subring_zmod] : GRing.Pred.divalg >-> GRing.Pred.zmod
[GRing.Pred.divalg_ring; GRing.Pred.divring_ring; GRing.Pred.subring_semi;
 GRing.Pred.semiring_mul] : GRing.Pred.divalg >-> GRing.Pred.mul
[GRing.Pred.divalg_ring; GRing.Pred.divring_ring; GRing.Pred.subring_zmod;
 GRing.Pred.zmod_add] : GRing.Pred.divalg >-> GRing.Pred.add
[GRing.Pred.divalg_ring; GRing.Pred.divring_ring; GRing.Pred.subring_zmod;
 GRing.Pred.zmod_opp; GRing.Pred.opp_key] : GRing.Pred.divalg >-> pred_key
[GRing.Pred.divalg_ring; GRing.Pred.divring_ring; GRing.Pred.subring_zmod;
 GRing.Pred.zmod_opp] : GRing.Pred.divalg >-> GRing.Pred.opp
Ambiguous paths:
[FinGroup.sort] : FinGroup.base_type >-> Sortclass
Ambiguous paths:
[FinGroup.base; FinGroup.arg_eqType; Equality.sort] : FinGroup.type >-> Sortclass
[FinGroup.arg_eqType; Equality.sort] : FinGroup.base_type >-> Sortclass
Ambiguous paths:
[FinGroup.base; FinGroup.arg_choiceType; Choice.eqType] : FinGroup.type >-> Equality.type
[FinGroup.base; FinGroup.arg_choiceType; Choice.eqType; Equality.sort] : FinGroup.type >-> predArgType
[FinGroup.base; FinGroup.arg_choiceType; Choice.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : FinGroup.type >-> pred_sort
[FinGroup.base; FinGroup.arg_choiceType; Choice.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : FinGroup.type >-> collective_pred
[FinGroup.base; FinGroup.arg_choiceType; Choice.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : FinGroup.type >-> applicative_pred
[FinGroup.base; FinGroup.arg_choiceType; Choice.eqType; Equality.sort;
 pred_of_argType] : FinGroup.type >-> simpl_pred
[FinGroup.base; FinGroup.arg_choiceType; Choice.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : FinGroup.type >-> pred
[FinGroup.base; FinGroup.arg_choiceType; Choice.sort] : FinGroup.type >-> Sortclass
[FinGroup.base; FinGroup.arg_choiceType; Choice.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : FinGroup.type >-> Funclass
[FinGroup.arg_choiceType; Choice.eqType] : FinGroup.base_type >-> Equality.type
[FinGroup.arg_choiceType; Choice.eqType; Equality.sort] : FinGroup.base_type >-> predArgType
[FinGroup.arg_choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 sort_of_simpl_pred] : FinGroup.base_type >-> pred_sort
[FinGroup.arg_choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 collective_pred_of_simpl] : FinGroup.base_type >-> collective_pred
[FinGroup.arg_choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 applicative_pred_of_simpl] : FinGroup.base_type >-> applicative_pred
[FinGroup.arg_choiceType; Choice.eqType; Equality.sort; pred_of_argType] : FinGroup.base_type >-> simpl_pred
[FinGroup.arg_choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl] : FinGroup.base_type >-> pred
[FinGroup.arg_choiceType; Choice.sort] : FinGroup.base_type >-> Sortclass
[FinGroup.arg_choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl; fun_of_pred] : FinGroup.base_type >-> Funclass
Ambiguous paths:
[FinGroup.base; FinGroup.arg_countType; Countable.choiceType] : FinGroup.type >-> Choice.type
[FinGroup.base; FinGroup.arg_countType; Countable.eqType] : FinGroup.type >-> Equality.type
[FinGroup.base; FinGroup.arg_countType; Countable.eqType; Equality.sort] : FinGroup.type >-> predArgType
[FinGroup.base; FinGroup.arg_countType; Countable.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : FinGroup.type >-> pred_sort
[FinGroup.base; FinGroup.arg_countType; Countable.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : FinGroup.type >-> collective_pred
[FinGroup.base; FinGroup.arg_countType; Countable.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : FinGroup.type >-> applicative_pred
[FinGroup.base; FinGroup.arg_countType; CountaWarning: Ignoring canonical projection to Group by Sub in group_of_subType: redundant with group_subType
Warning: Ignoring canonical projection to gval by val in group_of_subType: redundant with group_subType
ble.eqType; Equality.sort;
 pred_of_argType] : FinGroup.type >-> simpl_pred
[FinGroup.base; FinGroup.arg_countType; Countable.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : FinGroup.type >-> pred
[FinGroup.base; FinGroup.arg_countType; Countable.sort] : FinGroup.type >-> Sortclass
[FinGroup.base; FinGroup.arg_countType; Countable.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : FinGroup.type >-> Funclass
[FinGroup.arg_countType; Countable.choiceType] : FinGroup.base_type >-> Choice.type
[FinGroup.arg_countType; Countable.eqType] : FinGroup.base_type >-> Equality.type
[FinGroup.arg_countType; Countable.eqType; Equality.sort] : FinGroup.base_type >-> predArgType
[FinGroup.arg_countType; Countable.eqType; Equality.sort; pred_of_argType;
 sort_of_simpl_pred] : FinGroup.base_type >-> pred_sort
[FinGroup.arg_countType; Countable.eqType; Equality.sort; pred_of_argType;
 collective_pred_of_simpl] : FinGroup.base_type >-> collective_pred
[FinGroup.arg_countType; Countable.eqType; Equality.sort; pred_of_argType;
 applicative_pred_of_simpl] : FinGroup.base_type >-> applicative_pred
[FinGroup.arg_countType; Countable.eqType; Equality.sort; pred_of_argType] : FinGroup.base_type >-> simpl_pred
[FinGroup.arg_countType; Countable.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl] : FinGroup.base_type >-> pred
[FinGroup.arg_countType; Countable.sort] : FinGroup.base_type >-> Sortclass
[FinGroup.arg_countType; Countable.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl; fun_of_pred] : FinGroup.base_type >-> Funclass
Ambiguous paths:
[FinGroup.base; FinGroup.arg_finType; Finite.countType] : FinGroup.type >-> Countable.type
[FinGroup.base; FinGroup.arg_finType; Finite.choiceType] : FinGroup.type >-> Choice.type
[FinGroup.base; FinGroup.arg_finType; Finite.eqType] : FinGroup.type >-> Equality.type
[FinGroup.base; FinGroup.arg_finType; Finite.eqType; Equality.sort] : FinGroup.type >-> predArgType
[FinGroup.base; FinGroup.arg_finType; Finite.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : FinGroup.type >-> pred_sort
[FinGroup.base; FinGroup.arg_finType; Finite.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : FinGroup.type >-> collective_pred
[FinGroup.base; FinGroup.arg_finType; Finite.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : FinGroup.type >-> applicative_pred
[FinGroup.base; FinGroup.arg_finType; Finite.eqType; Equality.sort;
 pred_of_argType] : FinGroup.type >-> simpl_pred
[FinGroup.base; FinGroup.arg_finType; Finite.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : FinGroup.type >-> pred
[FinGroup.base; FinGroup.arg_finType; Finite.sort] : FinGroup.type >-> Sortclass
[FinGroup.base; FinGroup.arg_finType; Finite.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : FinGroup.type >-> Funclass
[FinGroup.arg_finType; Finite.countType] : FinGroup.base_type >-> Countable.type
[FinGroup.arg_finType; Finite.choiceType] : FinGroup.base_type >-> Choice.type
[FinGroup.arg_finType; Finite.eqType] : FinGroup.base_type >-> Equality.type
[FinGroup.arg_finType; Finite.eqType; Equality.sort] : FinGroup.base_type >-> predArgType
[FinGroup.arg_finType; Finite.eqType; Equality.sort; pred_of_argType;
 sort_of_simpl_pred] : FinGroup.base_type >-> pred_sort
[FinGroup.arg_finType; Finite.eqType; Equality.sort; pred_of_argType;
 collective_pred_of_simpl] : FinGroup.base_type >-> collective_pred
[FinGroup.arg_finType; Finite.eqType; Equality.sort; pred_of_argType;
 applicative_pred_of_simpl] : FinGroup.base_type >-> applicative_pred
[FinGroup.arg_finType; Finite.eqType; Equality.sort; pred_of_argType] : FinGroup.base_type >-> simpl_pred
[FinGroup.arg_finType; Finite.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl] : FinGroup.base_type >-> pred
[FinGroup.arg_finType; Finite.sort] : FinGroup.base_type >-> Sortclass
[FinGroup.arg_finType; Finite.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl; fun_of_pred] : FinGroup.base_type >-> Funclass
Ambiguous paths:
[FinRing.Zmodule.eqType; Equality.sort] : FinRing.Zmodule.type >-> Sortclass
Ambiguous paths:
[FinRing.Zmodule.choiceType; Choice.eqType] : FinRing.Zmodule.type >-> Equality.type
[FinRing.Zmodule.choiceType; Choice.eqType; Equality.sort] : FinRing.Zmodule.type >-> predArgType
[FinRing.Zmodule.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 sort_of_simpl_pred] : FinRing.Zmodule.type >-> pred_sort
[FinRing.Zmodule.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 collective_pred_of_simpl] : FinRing.Zmodule.type >-> collective_pred
[FinRing.Zmodule.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 applicative_pred_of_simpl] : FinRing.Zmodule.type >-> applicative_pred
[FinRing.Zmodule.choiceType; Choice.eqType; Equality.sort; pred_of_argType] : FinRing.Zmodule.type >-> simpl_pred
[FinRing.Zmodule.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl] : FinRing.Zmodule.type >-> pred
[FinRing.Zmodule.choiceType; Choice.sort] : FinRing.Zmodule.type >-> Sortclass
[FinRing.Zmodule.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl; fun_of_pred] : FinRing.Zmodule.type >-> Funclass
Ambiguous paths:
[FinRing.Zmodule.countType; Countable.choiceType] : FinRing.Zmodule.type >-> Choice.type
[FinRing.Zmodule.countType; Countable.eqType] : FinRing.Zmodule.type >-> Equality.type
[FinRing.Zmodule.countType; Countable.eqType; Equality.sort] : FinRing.Zmodule.type >-> predArgType
[FinRing.Zmodule.countType; Countable.eqType; Equality.sort; pred_of_argType;
 sort_of_simpl_pred] : FinRing.Zmodule.type >-> pred_sort
[FinRing.Zmodule.countType; Countable.eqType; Equality.sort; pred_of_argType;
 collective_pred_of_simpl] : FinRing.Zmodule.type >-> collective_pred
[FinRing.Zmodule.countType; Countable.eqType; Equality.sort; pred_of_argType;
 applicative_pred_of_simpl] : FinRing.Zmodule.type >-> applicative_pred
[FinRing.Zmodule.countType; Countable.eqType; Equality.sort; pred_of_argType] : FinRing.Zmodule.type >-> simpl_pred
[FinRing.Zmodule.countType; Countable.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl] : FinRing.Zmodule.type >-> pred
[FinRing.Zmodule.countType; Countable.sort] : FinRing.Zmodule.type >-> Sortclass
[FinRing.Zmodule.countType; Countable.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl; fun_of_pred] : FinRing.Zmodule.type >-> Funclass
Ambiguous paths:
[FinRing.Zmodule.finType; Finite.countType] : FinRing.Zmodule.type >-> Countable.type
[FinRing.Zmodule.finType; Finite.choiceType] : FinRing.Zmodule.type >-> Choice.type
[FinRing.Zmodule.finType; Finite.eqType] : FinRing.Zmodule.type >-> Equality.type
[FinRing.Zmodule.finType; Finite.eqType; Equality.sort] : FinRing.Zmodule.type >-> predArgType
[FinRing.Zmodule.finType; Finite.eqType; Equality.sort; pred_of_argType;
 sort_of_simpl_pred] : FinRing.Zmodule.type >-> pred_sort
[FinRing.Zmodule.finType; Finite.eqType; Equality.sort; pred_of_argType;
 collective_pred_of_simpl] : FinRing.Zmodule.type >-> collective_pred
[FinRing.Zmodule.finType; Finite.eqType; Equality.sort; pred_of_argType;
 applicative_pred_of_simpl] : FinRing.Zmodule.type >-> applicative_pred
[FinRing.Zmodule.finType; Finite.eqType; Equality.sort; pred_of_argType] : FinRing.Zmodule.type >-> simpl_pred
[FinRing.Zmodule.finType; Finite.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl] : FinRing.Zmodule.type >-> pred
[FinRing.Zmodule.finType; Finite.sort] : FinRing.Zmodule.type >-> Sortclass
[FinRing.Zmodule.finType; Finite.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl; fun_of_pred] : FinRing.Zmodule.type >-> Funclass
Ambiguous paths:
[FinRing.Zmodule.zmodType; GRing.Zmodule.choiceType] : FinRing.Zmodule.type >-> Choice.type
[FinRing.Zmodule.zmodType; GRing.Zmodule.eqType] : FinRing.Zmodule.type >-> Equality.type
[FinRing.Zmodule.zmodType; GRing.Zmodule.eqType; Equality.sort] : FinRing.Zmodule.type >-> predArgType
[FinRing.Zmodule.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : FinRing.Zmodule.type >-> pred_sort
[FinRing.Zmodule.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : FinRing.Zmodule.type >-> collective_pred
[FinRing.Zmodule.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : FinRing.Zmodule.type >-> applicative_pred
[FinRing.Zmodule.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType] : FinRing.Zmodule.type >-> simpl_pred
[FinRing.Zmodule.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : FinRing.Zmodule.type >-> pred
[FinRing.Zmodule.zmodType; GRing.Zmodule.sort] : FinRing.Zmodule.type >-> Sortclass
[FinRing.Zmodule.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : FinRing.Zmodule.type >-> Funclass
Ambiguous paths:
[FinRing.Zmodule.baseFinGroupType; FinGroup.arg_finType] : FinRing.Zmodule.type >-> Finite.type
[FinRing.Zmodule.baseFinGroupType; FinGroup.arg_countType] : FinRing.Zmodule.type >-> Countable.type
[FinRing.Zmodule.baseFinGroupType; FinGroup.arg_choiceType] : FinRing.Zmodule.type >-> Choice.type
[FinRing.Zmodule.baseFinGroupType; FinGroup.arg_eqType] : FinRing.Zmodule.type >-> Equality.type
[FinRing.Zmodule.baseFinGroupType; FinGroup.arg_eqType; Equality.sort] : FinRing.Zmodule.type >-> predArgType
[FinRing.Zmodule.baseFinGroupType; FinGroup.arg_eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : FinRing.Zmodule.type >-> pred_sort
[FinRing.Zmodule.baseFinGroupType; FinGroup.arg_eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : FinRing.Zmodule.type >-> collective_pred
[FinRing.Zmodule.baseFinGroupType; FinGroup.arg_eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : FinRing.Zmodule.type >-> applicative_pred
[FinRing.Zmodule.baseFinGroupType; FinGroup.arg_eqType; Equality.sort;
 pred_of_argType] : FinRing.Zmodule.type >-> simpl_pred
[FinRing.Zmodule.baseFinGroupType; FinGroup.arg_eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : FinRing.Zmodule.type >-> pred
[FinRing.Zmodule.baseFinGroupType; FinGroup.arg_sort] : FinRing.Zmodule.type >-> Sortclass
[FinRing.Zmodule.baseFinGroupType; FinGroup.arg_eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : FinRing.Zmodule.type >-> Funclass
Ambiguous paths:
[FinRing.Zmodule.finGroupType; FinGroup.base; FinGroup.mixin] : FinRing.Zmodule.type >-> FinGroup.mixin_of
[FinRing.Zmodule.finGroupType; FinGroup.base] : FinRing.Zmodule.type >-> FinGroup.base_type
[FinRing.Zmodule.finGroupType; FinGroup.base; FinGroup.arg_finType] : FinRing.Zmodule.type >-> Finite.type
[FinRing.Zmodule.finGroupType; FinGroup.base; FinGroup.arg_countType] : FinRing.Zmodule.type >-> Countable.type
[FinRing.Zmodule.finGroupType; FinGroup.base; FinGroup.arg_choiceType] : FinRing.Zmodule.type >-> Choice.type
[FinRing.Zmodule.finGroupType; FinGroup.base; FinGroup.arg_eqType] : FinRing.Zmodule.type >-> Equality.type
[FinRing.Zmodule.finGroupType; FinGroup.base; FinGroup.arg_eqType;
 Equality.sort] : FinRing.Zmodule.type >-> predArgType
[FinRing.Zmodule.finGroupType; FinGroup.base; FinGroup.arg_eqType;
 Equality.sort; pred_of_argType; sort_of_simpl_pred] : FinRing.Zmodule.type >-> pred_sort
[FinRing.Zmodule.finGroupType; FinGroup.base; FinGroup.arg_eqType;
 Equality.sort; pred_of_argType; collective_pred_of_simpl] : FinRing.Zmodule.type >-> collective_pred
[FinRing.Zmodule.finGroupType; FinGroup.base; FinGroup.arg_eqType;
 Equality.sort; pred_of_argType; applicative_pred_of_simpl] : FinRing.Zmodule.type >-> applicative_pred
[FinRing.Zmodule.finGroupType; FinGroup.base; FinGroup.arg_eqType;
 Equality.sort; pred_of_argType] : FinRing.Zmodule.type >-> simpl_pred
[FinRing.Zmodule.finGroupType; FinGroup.base; FinGroup.arg_eqType;
 Equality.sort; pred_of_argType; pred_of_simpl] : FinRing.Zmodule.type >-> pred
[FinRing.Zmodule.finGroupType; FinGroup.base; FinGroup.arg_sort] : FinRing.Zmodule.type >-> Sortclass
[FinRing.Zmodule.finGroupType; FinGroup.base; FinGroup.arg_eqType;
 Equality.sort; pred_of_argType; pred_of_simpl; fun_of_pred] : FinRing.Zmodule.type >-> Funclass
Ambiguous paths:
[FinRing.Ring.base2; FinRing.Zmodule.base; GRing.Zmodule.mixin] : FinRing.Ring.class_of >-> GRing.Zmodule.mixin_of
[FinRing.Ring.base2; FinRing.Zmodule.base] : FinRing.Ring.class_of >-> GRing.Zmodule.class_of
[FinRing.Ring.base2; FinRing.Zmodule.base; GRing.Zmodule.base; Choice.base] : FinRing.Ring.class_of >-> Equality.mixin_of
[FinRing.Ring.base2; FinRing.Zmodule.base; GRing.Zmodule.base] : FinRing.Ring.class_of >-> Choice.class_of
Ambiguous paths:
[FinRing.Ring.eqType; Equality.sort] : FinRing.Ring.type >-> Sortclass
Ambiguous paths:
[FinRing.Ring.choiceType; Choice.eqType] : FinRing.Ring.type >-> Equality.type
[FinRing.Ring.choiceType; Choice.eqType; Equality.sort] : FinRing.Ring.type >-> predArgType
[FinRing.Ring.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 sort_of_simpl_pred] : FinRing.Ring.type >-> pred_sort
[FinRing.Ring.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 collective_pred_of_simpl] : FinRing.Ring.type >-> collective_pred
[FinRing.Ring.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 applicative_pred_of_simpl] : FinRing.Ring.type >-> applicative_pred
[FinRing.Ring.choiceType; Choice.eqType; Equality.sort; pred_of_argType] : FinRing.Ring.type >-> simpl_pred
[FinRing.Ring.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl] : FinRing.Ring.type >-> pred
[FinRing.Ring.choiceType; Choice.sort] : FinRing.Ring.type >-> Sortclass
[FinRing.Ring.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl; fun_of_pred] : FinRing.Ring.type >-> Funclass
Ambiguous paths:
[FinRing.Ring.countType; Countable.choiceType] : FinRing.Ring.type >-> Choice.type
[FinRing.Ring.countType; Countable.eqType] : FinRing.Ring.type >-> Equality.type
[FinRing.Ring.countType; Countable.eqType; Equality.sort] : FinRing.Ring.type >-> predArgType
[FinRing.Ring.countType; Countable.eqType; Equality.sort; pred_of_argType;
 sort_of_simpl_pred] : FinRing.Ring.type >-> pred_sort
[FinRing.Ring.countType; Countable.eqType; Equality.sort; pred_of_argType;
 collective_pred_of_simpl] : FinRing.Ring.type >-> collective_pred
[FinRing.Ring.countType; Countable.eqType; Equality.sort; pred_of_argType;
 applicative_pred_of_simpl] : FinRing.Ring.type >-> applicative_pred
[FinRing.Ring.countType; Countable.eqType; Equality.sort; pred_of_argType] : FinRing.Ring.type >-> simpl_pred
[FinRing.Ring.countType; Countable.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl] : FinRing.Ring.type >-> pred
[FinRing.Ring.countType; Countable.sort] : FinRing.Ring.type >-> Sortclass
[FinRing.Ring.countType; Countable.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl; fun_of_pred] : FinRing.Ring.type >-> Funclass
Ambiguous paths:
[FinRing.Ring.finType; Finite.countType] : FinRing.Ring.type >-> Countable.type
[FinRing.Ring.finType; Finite.choiceType] : FinRing.Ring.type >-> Choice.type
[FinRing.Ring.finType; Finite.eqType] : FinRing.Ring.type >-> Equality.type
[FinRing.Ring.finType; Finite.eqType; Equality.sort] : FinRing.Ring.type >-> predArgType
[FinRing.Ring.finType; Finite.eqType; Equality.sort; pred_of_argType;
 sort_of_simpl_pred] : FinRing.Ring.type >-> pred_sort
[FinRing.Ring.finType; Finite.eqType; Equality.sort; pred_of_argType;
 collective_pred_of_simpl] : FinRing.Ring.type >-> collective_pred
[FinRing.Ring.finType; Finite.eqType; Equality.sort; pred_of_argType;
 applicative_pred_of_simpl] : FinRing.Ring.type >-> applicative_pred
[FinRing.Ring.finType; Finite.eqType; Equality.sort; pred_of_argType] : FinRing.Ring.type >-> simpl_pred
[FinRing.Ring.finType; Finite.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl] : FinRing.Ring.type >-> pred
[FinRing.Ring.finType; Finite.sort] : FinRing.Ring.type >-> Sortclass
[FinRing.Ring.finType; Finite.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl; fun_of_pred] : FinRing.Ring.type >-> Funclass
Ambiguous paths:
[FinRing.Ring.zmodType; GRing.Zmodule.choiceType] : FinRing.Ring.type >-> Choice.type
[FinRing.Ring.zmodType; GRing.Zmodule.eqType] : FinRing.Ring.type >-> Equality.type
[FinRing.Ring.zmodType; GRing.Zmodule.eqType; Equality.sort] : FinRing.Ring.type >-> predArgType
[FinRing.Ring.zmodType; GRing.Zmodule.eqType; Equality.sort; pred_of_argType;
 sWarning: Ignoring canonical projection to GRing.Zmodule.sort by FinGroup.sort in FinRing.Ring.join_baseFinGroupType: redundant with FinRing.Zmodule.join_baseFinGroupType
ort_of_simpl_pred] : FinRing.Ring.type >-> pred_sort
[FinRing.Ring.zmodType; GRing.Zmodule.eqType; Equality.sort; pred_of_argType;
 collective_pred_of_simpl] : FinRing.Ring.type >-> collective_pred
[FinRing.Ring.zmodType; GRing.Zmodule.eqType; Equality.sort; pred_of_argType;
 applicative_pred_of_simpl] : FinRing.Ring.type >-> applicative_pred
[FinRing.Ring.zmodType; GRing.Zmodule.eqType; Equality.sort; pred_of_argType] : FinRing.Ring.type >-> simpl_pred
[FinRing.Ring.zmodType; GRing.Zmodule.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl] : FinRing.Ring.type >-> pred
[FinRing.Ring.zmodType; GRing.Zmodule.sort] : FinRing.Ring.type >-> Sortclass
[FinRing.Ring.zmodType; GRing.Zmodule.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl; fun_of_pred] : FinRing.Ring.type >-> Funclass
Ambiguous paths:
[FinRing.Ring.finZmodType; FinRing.Zmodule.zmodType] : FinRing.Ring.type >-> GRing.Zmodule.type
[FinRing.Ring.finZmodType; FinRing.Zmodule.finType] : FinRing.Ring.type >-> Finite.type
[FinRing.Ring.finZmodType; FinRing.Zmodule.countType] : FinRing.Ring.type >-> Countable.type
[FinRing.Ring.finZmodType; FinRing.Zmodule.choiceType] : FinRing.Ring.type >-> Choice.type
[FinRing.Ring.finZmodType; FinRing.Zmodule.eqType] : FinRing.Ring.type >-> Equality.type
[FinRing.Ring.finZmodType; FinRing.Zmodule.eqType; Equality.sort] : FinRing.Ring.type >-> predArgType
[FinRing.Ring.finZmodType; FinRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : FinRing.Ring.type >-> pred_sort
[FinRing.Ring.finZmodType; FinRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : FinRing.Ring.type >-> collective_pred
[FinRing.Ring.finZmodType; FinRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : FinRing.Ring.type >-> applicative_pred
[FinRing.Ring.finZmodType; FinRing.Zmodule.eqType; Equality.sort;
 pred_of_argType] : FinRing.Ring.type >-> simpl_pred
[FinRing.Ring.finZmodType; FinRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : FinRing.Ring.type >-> pred
[FinRing.Ring.finZmodType; FinRing.Zmodule.sort] : FinRing.Ring.type >-> Sortclass
[FinRing.Ring.finZmodType; FinRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : FinRing.Ring.type >-> Funclass
Ambiguous paths:
[FinRing.Ring.ringType; GRing.Ring.zmodType] : FinRing.Ring.type >-> GRing.Zmodule.type
[FinRing.Ring.ringType; GRing.Ring.choiceType] : FinRing.Ring.type >-> Choice.type
[FinRing.Ring.ringType; GRing.Ring.eqType] : FinRing.Ring.type >-> Equality.type
[FinRing.Ring.ringType; GRing.Ring.eqType; Equality.sort] : FinRing.Ring.type >-> predArgType
[FinRing.Ring.ringType; GRing.Ring.eqType; Equality.sort; pred_of_argType;
 sort_of_simpl_pred] : FinRing.Ring.type >-> pred_sort
[FinRing.Ring.ringType; GRing.Ring.eqType; Equality.sort; pred_of_argType;
 collective_pred_of_simpl] : FinRing.Ring.type >-> collective_pred
[FinRing.Ring.ringType; GRing.Ring.eqType; Equality.sort; pred_of_argType;
 applicative_pred_of_simpl] : FinRing.Ring.type >-> applicative_pred
[FinRing.Ring.ringType; GRing.Ring.eqType; Equality.sort; pred_of_argType] : FinRing.Ring.type >-> simpl_pred
[FinRing.Ring.ringType; GRing.Ring.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl] : FinRing.Ring.type >-> pred
[FinRing.Ring.ringType; GRing.Ring.sort] : FinRing.Ring.type >-> Sortclass
[FinRing.Ring.ringType; GRing.Ring.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl; fun_of_pred] : FinRing.Ring.type >-> Funclass
Ambiguous paths:
[FinRing.ComRing.base2; FinRing.Ring.base; GRing.Ring.mixin] : FinRing.ComRing.class_of >-> GRing.Ring.mixin_of
[FinRing.ComRing.base2; FinRing.Ring.base] : FinRing.ComRing.class_of >-> GRing.Ring.class_of
[FinRing.ComRing.base2; FinRing.Ring.base; GRing.Ring.base;
 GRing.Zmodule.mixin] : FinRing.ComRing.class_of >-> GRing.Zmodule.mixin_of
[FinRing.ComRing.base2; FinRing.Ring.base; GRing.Ring.base] : FinRing.ComRing.class_of >-> GRing.Zmodule.class_of
[FinRing.ComRing.base2; FinRing.Ring.base; GRing.Ring.base;
 GRing.Zmodule.base; Choice.base] : FinRing.ComRing.class_of >-> Equality.mixin_of
[FinRing.ComRing.base2; FinRing.Ring.base; GRing.Ring.base;
 GRing.Zmodule.base] : FinRing.ComRing.class_of >-> Choice.class_of
Ambiguous paths:
[FinRing.ComRing.eqType; Equality.sort] : FinRing.ComRing.type >-> Sortclass
Ambiguous paths:
[FinRing.ComRing.choiceType; Choice.eqType] : FinRing.ComRing.type >-> Equality.type
[FinRing.ComRing.choiceType; Choice.eqType; Equality.sort] : FinRing.ComRing.type >-> predArgType
[FinRing.ComRing.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 sort_of_simpl_pred] : FinRing.ComRing.type >-> pred_sort
[FinRing.ComRing.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 collective_pred_of_simpl] : FinRing.ComRing.type >-> collective_pred
[FinRing.ComRing.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 applicative_pred_of_simpl] : FinRing.ComRing.type >-> applicative_pred
[FinRing.ComRing.choiceType; Choice.eqType; Equality.sort; pred_of_argType] : FinRing.ComRing.type >-> simpl_pred
[FinRing.ComRing.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl] : FinRing.ComRing.type >-> pred
[FinRing.ComRing.choiceType; Choice.sort] : FinRing.ComRing.type >-> Sortclass
[FinRing.ComRing.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl; fun_of_pred] : FinRing.ComRing.type >-> Funclass
Ambiguous paths:
[FinRing.ComRing.countType; Countable.choiceType] : FinRing.ComRing.type >-> Choice.type
[FinRing.ComRing.countType; Countable.eqType] : FinRing.ComRing.type >-> Equality.type
[FinRing.ComRing.countType; Countable.eqType; Equality.sort] : FinRing.ComRing.type >-> predArgType
[FinRing.ComRing.countType; Countable.eqType; Equality.sort; pred_of_argType;
 sort_of_simpl_pred] : FinRing.ComRing.type >-> pred_sort
[FinRing.ComRing.countType; Countable.eqType; Equality.sort; pred_of_argType;
 collective_pred_of_simpl] : FinRing.ComRing.type >-> collective_pred
[FinRing.ComRing.countType; Countable.eqType; Equality.sort; pred_of_argType;
 applicative_pred_of_simpl] : FinRing.ComRing.type >-> applicative_pred
[FinRing.ComRing.countType; Countable.eqType; Equality.sort; pred_of_argType] : FinRing.ComRing.type >-> simpl_pred
[FinRing.ComRing.countType; Countable.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl] : FinRing.ComRing.type >-> pred
[FinRing.ComRing.countType; Countable.sort] : FinRing.ComRing.type >-> Sortclass
[FinRing.ComRing.countType; Countable.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl; fun_of_pred] : FinRing.ComRing.type >-> Funclass
Ambiguous paths:
[FinRing.ComRing.finType; Finite.countType] : FinRing.ComRing.type >-> Countable.type
[FinRing.ComRing.finType; Finite.choiceType] : FinRing.ComRing.type >-> Choice.type
[FinRing.ComRing.finType; Finite.eqType] : FinRing.ComRing.type >-> Equality.type
[FinRing.ComRing.finType; Finite.eqType; Equality.sort] : FinRing.ComRing.type >-> predArgType
[FinRing.ComRing.finType; Finite.eqType; Equality.sort; pred_of_argType;
 sort_of_simpl_pred] : FinRing.ComRing.type >-> pred_sort
[FinRing.ComRing.finType; Finite.eqType; Equality.sort; pred_of_argType;
 collective_pred_of_simpl] : FinRing.ComRing.type >-> collective_pred
[FinRing.ComRing.finType; Finite.eqType; Equality.sort; pred_of_argType;
 applicative_pred_of_simpl] : FinRing.ComRing.type >-> applicative_pred
[FinRing.ComRing.finType; Finite.eqType; Equality.sort; pred_of_argType] : FinRing.ComRing.type >-> simpl_pred
[FinRing.ComRing.finType; Finite.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl] : FinRing.ComRing.type >-> pred
[FinRing.ComRing.finType; Finite.sort] : FinRing.ComRing.type >-> Sortclass
[FinRing.ComRing.finType; Finite.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl; fun_of_pred] : FinRing.ComRing.type >-> Funclass
Ambiguous paths:
[FinRing.ComRing.zmodType; GRing.Zmodule.choiceType] : FinRing.ComRing.type >-> Choice.type
[FinRing.ComRing.zmodType; GRing.Zmodule.eqType] : FinRing.ComRing.type >-> Equality.type
[FinRing.ComRing.zmodType; GRing.Zmodule.eqType; Equality.sort] : FinRing.ComRing.type >-> predArgType
[FinRing.ComRing.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : FinRing.ComRing.type >-> pred_sort
[FinRing.ComRing.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : FinRing.ComRing.type >-> collective_pred
[FinRing.ComRing.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : FinRing.ComRing.type >-> applicative_pred
[FinRing.ComRing.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType] : FinRing.ComRing.type >-> simpl_pred
[FinRing.ComRing.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : FinRing.ComRing.type >-> pred
[FinRing.ComRing.zmodType; GRing.Zmodule.sort] : FinRing.ComRing.type >-> Sortclass
[FinRing.ComRing.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : FinRing.ComRing.type >-> Funclass
Ambiguous paths:
[FinRing.ComRing.finZmodType; FinRing.Zmodule.zmodType] : FinRing.ComRing.type >-> GRing.Zmodule.type
[FinRing.ComRing.finZmodType; FinRing.Zmodule.finType] : FinRing.ComRing.type >-> Finite.type
[FinRing.ComRing.finZmodType; FinRing.Zmodule.countType] : FinRing.ComRing.type >-> Countable.type
[FinRing.ComRing.finZmodType; FinRing.Zmodule.choiceType] : FinRing.ComRing.type >-> Choice.type
[FinRing.ComRing.finZmodType; FinRing.Zmodule.eqType] : FinRing.ComRing.type >-> Equality.type
[FinRing.ComRing.finZmodType; FinRing.Zmodule.eqType; Equality.sort] : FinRing.ComRing.type >-> predArgType
[FinRing.ComRing.finZmodType; FinRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : FinRing.ComRing.type >-> pred_sort
[FinRing.ComRing.finZmodType; FinRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : FinRing.ComRing.type >-> collective_pred
[FinRing.ComRing.finZmodType; FinRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : FinRing.ComRing.type >-> applicative_pred
[FinRing.ComRing.finZmodType; FinRing.Zmodule.eqType; Equality.sort;
 pred_of_argType] : FinRing.ComRing.type >-> simpl_pred
[FinRing.ComRing.finZmodType; FinRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : FinRing.ComRing.type >-> pred
[FinRing.ComRing.finZmodType; FinRing.Zmodule.sort] : FinRing.ComRing.type >-> Sortclass
[FinRing.ComRing.finZmodType; FinRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : FinRing.ComRing.type >-> Funclass
Ambiguous paths:
[FinRing.ComRing.ringType; GRing.Ring.zmodType] : FinRing.ComRing.type >-> GRing.Zmodule.type
[FinRing.ComRing.ringType; GRing.Ring.choiceType] : FinRing.ComRing.type >-> Choice.type
[FinRing.ComRing.ringType; GRing.Ring.eqType] : FinRing.ComRing.type >-> Equality.type
[FinRing.ComRing.ringType; GRing.Ring.eqType; Equality.sort] : FinRing.ComRing.type >-> predArgType
[FinRing.ComRing.ringType; GRing.Ring.eqType; Equality.sort; pred_of_argType;
 sort_of_simpl_pred] : FinRing.ComRing.type >-> pred_sort
[FinRing.ComRing.ringType; GRing.Ring.eqType; Equality.sort; pred_of_argType;
 collective_pred_of_simpl] : FinRing.ComRing.type >-> collective_pred
[FinRing.ComRing.ringType; GRing.Ring.eqType; Equality.sort; pred_of_argType;
 applicative_pred_of_simpl] : FinRing.ComRing.type >-> applicative_pred
[FinRing.ComRing.ringType; GRing.Ring.eqType; Equality.sort; pred_of_argType] : FinRing.ComRing.type >-> simpl_pred
[FinRing.ComRing.ringType; GRing.Ring.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl] : FinRing.ComRing.type >-> pred
[FinRing.ComRing.ringType; GRing.Ring.sort] : FinRing.ComRing.type >-> Sortclass
[FinRing.ComRing.ringType; GRing.Ring.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl; fun_of_pred] : FinRing.ComRing.type >-> Funclass
Ambiguous paths:
[FinRing.ComRing.finRingType; FinRing.Ring.finZmodType] : FinRing.ComRing.type >-> FinRing.Zmodule.type
[FinRing.ComRing.finRingType; FinRing.Ring.finZmodType;
 FinRing.Zmodule.finGroupType] : FinRing.ComRing.type >-> FinGroup.type
[FinRing.ComRing.finRingType; FinRing.Ring.finZmodType;
 FinRing.Zmodule.baseFinGroupType; FinGroup.miWarning: Ignoring canonical projection to GRing.Zmodule.sort by FinGroup.sort in FinRing.ComRing.join_baseFinGroupType: redundant with FinRing.Zmodule.join_baseFinGroupType
xin] : FinRing.ComRing.type >-> FinGroup.mixin_of
[FinRing.ComRing.finRingType; FinRing.Ring.finZmodType;
 FinRing.Zmodule.baseFinGroupType] : FinRing.ComRing.type >-> FinGroup.base_type
[FinRing.ComRing.finRingType; FinRing.Ring.ringType] : FinRing.ComRing.type >-> GRing.Ring.type
[FinRing.ComRing.finRingType; FinRing.Ring.zmodType] : FinRing.ComRing.type >-> GRing.Zmodule.type
[FinRing.ComRing.finRingType; FinRing.Ring.finType] : FinRing.ComRing.type >-> Finite.type
[FinRing.ComRing.finRingType; FinRing.Ring.countType] : FinRing.ComRing.type >-> Countable.type
[FinRing.ComRing.finRingType; FinRing.Ring.choiceType] : FinRing.ComRing.type >-> Choice.type
[FinRing.ComRing.finRingType; FinRing.Ring.eqType] : FinRing.ComRing.type >-> Equality.type
[FinRing.ComRing.finRingType; FinRing.Ring.eqType; Equality.sort] : FinRing.ComRing.type >-> predArgType
[FinRing.ComRing.finRingType; FinRing.Ring.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : FinRing.ComRing.type >-> pred_sort
[FinRing.ComRing.finRingType; FinRing.Ring.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : FinRing.ComRing.type >-> collective_pred
[FinRing.ComRing.finRingType; FinRing.Ring.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : FinRing.ComRing.type >-> applicative_pred
[FinRing.ComRing.finRingType; FinRing.Ring.eqType; Equality.sort;
 pred_of_argType] : FinRing.ComRing.type >-> simpl_pred
[FinRing.ComRing.finRingType; FinRing.Ring.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : FinRing.ComRing.type >-> pred
[FinRing.ComRing.finRingType; FinRing.Ring.sort] : FinRing.ComRing.type >-> Sortclass
[FinRing.ComRing.finRingType; FinRing.Ring.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : FinRing.ComRing.type >-> Funclass
Ambiguous paths:
[FinRing.ComRing.comRingType; GRing.ComRing.ringType] : FinRing.ComRing.type >-> GRing.Ring.type
[FinRing.ComRing.comRingType; GRing.ComRing.zmodType] : FinRing.ComRing.type >-> GRing.Zmodule.type
[FinRing.ComRing.comRingType; GRing.ComRing.choiceType] : FinRing.ComRing.type >-> Choice.type
[FinRing.ComRing.comRingType; GRing.ComRing.eqType] : FinRing.ComRing.type >-> Equality.type
[FinRing.ComRing.comRingType; GRing.ComRing.eqType; Equality.sort] : FinRing.ComRing.type >-> predArgType
[FinRing.ComRing.comRingType; GRing.ComRing.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : FinRing.ComRing.type >-> pred_sort
[FinRing.ComRing.comRingType; GRing.ComRing.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : FinRing.ComRing.type >-> collective_pred
[FinRing.ComRing.comRingType; GRing.ComRing.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : FinRing.ComRing.type >-> applicative_pred
[FinRing.ComRing.comRingType; GRing.ComRing.eqType; Equality.sort;
 pred_of_argType] : FinRing.ComRing.type >-> simpl_pred
[FinRing.ComRing.comRingType; GRing.ComRing.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : FinRing.ComRing.type >-> pred
[FinRing.ComRing.comRingType; GRing.ComRing.sort] : FinRing.ComRing.type >-> Sortclass
[FinRing.ComRing.comRingType; GRing.ComRing.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : FinRing.ComRing.type >-> Funclass
Ambiguous paths:
[FinRing.UnitRing.base2; FinRing.Ring.base; GRing.Ring.mixin] : FinRing.UnitRing.class_of >-> GRing.Ring.mixin_of
[FinRing.UnitRing.base2; FinRing.Ring.base] : FinRing.UnitRing.class_of >-> GRing.Ring.class_of
[FinRing.UnitRing.base2; FinRing.Ring.base; GRing.Ring.base;
 GRing.Zmodule.mixin] : FinRing.UnitRing.class_of >-> GRing.Zmodule.mixin_of
[FinRing.UnitRing.base2; FinRing.Ring.base; GRing.Ring.base] : FinRing.UnitRing.class_of >-> GRing.Zmodule.class_of
[FinRing.UnitRing.base2; FinRing.Ring.base; GRing.Ring.base;
 GRing.Zmodule.base; Choice.base] : FinRing.UnitRing.class_of >-> Equality.mixin_of
[FinRing.UnitRing.base2; FinRing.Ring.base; GRing.Ring.base;
 GRing.Zmodule.base] : FinRing.UnitRing.class_of >-> Choice.class_of
Ambiguous paths:
[FinRing.UnitRing.eqType; Equality.sort] : FinRing.UnitRing.type >-> Sortclass
Ambiguous paths:
[FinRing.UnitRing.choiceType; Choice.eqType] : FinRing.UnitRing.type >-> Equality.type
[FinRing.UnitRing.choiceType; Choice.eqType; Equality.sort] : FinRing.UnitRing.type >-> predArgType
[FinRing.UnitRing.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 sort_of_simpl_pred] : FinRing.UnitRing.type >-> pred_sort
[FinRing.UnitRing.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 collective_pred_of_simpl] : FinRing.UnitRing.type >-> collective_pred
[FinRing.UnitRing.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 applicative_pred_of_simpl] : FinRing.UnitRing.type >-> applicative_pred
[FinRing.UnitRing.choiceType; Choice.eqType; Equality.sort; pred_of_argType] : FinRing.UnitRing.type >-> simpl_pred
[FinRing.UnitRing.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl] : FinRing.UnitRing.type >-> pred
[FinRing.UnitRing.choiceType; Choice.sort] : FinRing.UnitRing.type >-> Sortclass
[FinRing.UnitRing.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl; fun_of_pred] : FinRing.UnitRing.type >-> Funclass
Ambiguous paths:
[FinRing.UnitRing.countType; Countable.choiceType] : FinRing.UnitRing.type >-> Choice.type
[FinRing.UnitRing.countType; Countable.eqType] : FinRing.UnitRing.type >-> Equality.type
[FinRing.UnitRing.countType; Countable.eqType; Equality.sort] : FinRing.UnitRing.type >-> predArgType
[FinRing.UnitRing.countType; Countable.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : FinRing.UnitRing.type >-> pred_sort
[FinRing.UnitRing.countType; Countable.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : FinRing.UnitRing.type >-> collective_pred
[FinRing.UnitRing.countType; Countable.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : FinRing.UnitRing.type >-> applicative_pred
[FinRing.UnitRing.countType; Countable.eqType; Equality.sort; pred_of_argType] : FinRing.UnitRing.type >-> simpl_pred
[FinRing.UnitRing.countType; Countable.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : FinRing.UnitRing.type >-> pred
[FinRing.UnitRing.countType; Countable.sort] : FinRing.UnitRing.type >-> Sortclass
[FinRing.UnitRing.countType; Countable.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : FinRing.UnitRing.type >-> Funclass
Ambiguous paths:
[FinRing.UnitRing.finType; Finite.countType] : FinRing.UnitRing.type >-> Countable.type
[FinRing.UnitRing.finType; Finite.choiceType] : FinRing.UnitRing.type >-> Choice.type
[FinRing.UnitRing.finType; Finite.eqType] : FinRing.UnitRing.type >-> Equality.type
[FinRing.UnitRing.finType; Finite.eqType; Equality.sort] : FinRing.UnitRing.type >-> predArgType
[FinRing.UnitRing.finType; Finite.eqType; Equality.sort; pred_of_argType;
 sort_of_simpl_pred] : FinRing.UnitRing.type >-> pred_sort
[FinRing.UnitRing.finType; Finite.eqType; Equality.sort; pred_of_argType;
 collective_pred_of_simpl] : FinRing.UnitRing.type >-> collective_pred
[FinRing.UnitRing.finType; Finite.eqType; Equality.sort; pred_of_argType;
 applicative_pred_of_simpl] : FinRing.UnitRing.type >-> applicative_pred
[FinRing.UnitRing.finType; Finite.eqType; Equality.sort; pred_of_argType] : FinRing.UnitRing.type >-> simpl_pred
[FinRing.UnitRing.finType; Finite.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl] : FinRing.UnitRing.type >-> pred
[FinRing.UnitRing.finType; Finite.sort] : FinRing.UnitRing.type >-> Sortclass
[FinRing.UnitRing.finType; Finite.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl; fun_of_pred] : FinRing.UnitRing.type >-> Funclass
Ambiguous paths:
[FinRing.UnitRing.zmodType; GRing.Zmodule.choiceType] : FinRing.UnitRing.type >-> Choice.type
[FinRing.UnitRing.zmodType; GRing.Zmodule.eqType] : FinRing.UnitRing.type >-> Equality.type
[FinRing.UnitRing.zmodType; GRing.Zmodule.eqType; Equality.sort] : FinRing.UnitRing.type >-> predArgType
[FinRing.UnitRing.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : FinRing.UnitRing.type >-> pred_sort
[FinRing.UnitRing.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : FinRing.UnitRing.type >-> collective_pred
[FinRing.UnitRing.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : FinRing.UnitRing.type >-> applicative_pred
[FinRing.UnitRing.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType] : FinRing.UnitRing.type >-> simpl_pred
[FinRing.UnitRing.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : FinRing.UnitRing.type >-> pred
[FinRing.UnitRing.zmodType; GRing.Zmodule.sort] : FinRing.UnitRing.type >-> Sortclass
[FinRing.UnitRing.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : FinRing.UnitRing.type >-> Funclass
Ambiguous paths:
[FinRing.UnitRing.finZmodType; FinRing.Zmodule.zmodType] : FinRing.UnitRing.type >-> GRing.Zmodule.type
[FinRing.UnitRing.finZmodType; FinRing.Zmodule.finType] : FinRing.UnitRing.type >-> Finite.type
[FinRing.UnitRing.finZmodType; FinRing.Zmodule.countType] : FinRing.UnitRing.type >-> Countable.type
[FinRing.UnitRing.finZmodType; FinRing.Zmodule.choiceType] : FinRing.UnitRing.type >-> Choice.type
[FinRing.UnitRing.finZmodType; FinRing.Zmodule.eqType] : FinRing.UnitRing.type >-> Equality.type
[FinRing.UnitRing.finZmodType; FinRing.Zmodule.eqType; Equality.sort] : FinRing.UnitRing.type >-> predArgType
[FinRing.UnitRing.finZmodType; FinRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : FinRing.UnitRing.type >-> pred_sort
[FinRing.UnitRing.finZmodType; FinRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : FinRing.UnitRing.type >-> collective_pred
[FinRing.UnitRing.finZmodType; FinRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : FinRing.UnitRing.type >-> applicative_pred
[FinRing.UnitRing.finZmodType; FinRing.Zmodule.eqType; Equality.sort;
 pred_of_argType] : FinRing.UnitRing.type >-> simpl_pred
[FinRing.UnitRing.finZmodType; FinRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : FinRing.UnitRing.type >-> pred
[FinRing.UnitRing.finZmodType; FinRing.Zmodule.sort] : FinRing.UnitRing.type >-> Sortclass
[FinRing.UnitRing.finZmodType; FinRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : FinRing.UnitRing.type >-> Funclass
Ambiguous paths:
[FinRing.UnitRing.ringType; GRing.Ring.zmodType] : FinRing.UnitRing.type >-> GRing.Zmodule.type
[FinRing.UnitRing.ringType; GRing.Ring.choiceType] : FinRing.UnitRing.type >-> Choice.type
[FinRing.UnitRing.ringType; GRing.Ring.eqType] : FinRing.UnitRing.type >-> Equality.type
[FinRing.UnitRing.ringType; GRing.Ring.eqType; Equality.sort] : FinRing.UnitRing.type >-> predArgType
[FinRing.UnitRing.ringType; GRing.Ring.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : FinRing.UnitRing.type >-> pred_sort
[FinRing.UnitRing.ringType; GRing.Ring.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : FinRing.UnitRing.type >-> collective_pred
[FinRing.UnitRing.ringType; GRing.Ring.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : FinRing.UnitRing.type >-> applicative_pred
[FinRing.UnitRing.ringType; GRing.Ring.eqType; Equality.sort; pred_of_argType] : FinRing.UnitRing.type >-> simpl_pred
[FinRing.UnitRing.ringType; GRing.Ring.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : FinRing.UnitRing.type >-> pred
[FinRing.UnitRing.ringType; GRing.Ring.sort] : FinRing.UnitRing.type >-> Sortclass
[FinRing.UnitRing.ringType; GRing.Ring.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : FinRing.UnitRing.type >-> Funclass
Ambiguous paths:
[FinRing.UnitRing.finRingType; FinRing.Ring.finZmodType] : FinRing.UnitRing.type >-> FinRing.Zmodule.type
[FinRing.UnitRing.finRingType; FinRing.Ring.finZmodType;
 FinRing.Zmodule.finGroupType] : FinRing.UnitRing.type >-> FinGroup.type
[FinRing.UnitRing.finRingType; FinRing.Ring.finZmodType;
 FinRing.Zmodule.baseFinGroupType; FinGroup.mixin] : FinRing.UnitRing.type >-> FinGroup.mixin_of
[FinRing.UnitRing.finRingType; FinRing.Ring.finZmodType;
 FinRing.Warning: Ignoring canonical projection to GRing.Zmodule.sort by FinGroup.sort in FinRing.UnitRing.join_baseFinGroupType: redundant with FinRing.Zmodule.join_baseFinGroupType
Zmodule.baseFinGroupType] : FinRing.UnitRing.type >-> FinGroup.base_type
[FinRing.UnitRing.finRingType; FinRing.Ring.ringType] : FinRing.UnitRing.type >-> GRing.Ring.type
[FinRing.UnitRing.finRingType; FinRing.Ring.zmodType] : FinRing.UnitRing.type >-> GRing.Zmodule.type
[FinRing.UnitRing.finRingType; FinRing.Ring.finType] : FinRing.UnitRing.type >-> Finite.type
[FinRing.UnitRing.finRingType; FinRing.Ring.countType] : FinRing.UnitRing.type >-> Countable.type
[FinRing.UnitRing.finRingType; FinRing.Ring.choiceType] : FinRing.UnitRing.type >-> Choice.type
[FinRing.UnitRing.finRingType; FinRing.Ring.eqType] : FinRing.UnitRing.type >-> Equality.type
[FinRing.UnitRing.finRingType; FinRing.Ring.eqType; Equality.sort] : FinRing.UnitRing.type >-> predArgType
[FinRing.UnitRing.finRingType; FinRing.Ring.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : FinRing.UnitRing.type >-> pred_sort
[FinRing.UnitRing.finRingType; FinRing.Ring.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : FinRing.UnitRing.type >-> collective_pred
[FinRing.UnitRing.finRingType; FinRing.Ring.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : FinRing.UnitRing.type >-> applicative_pred
[FinRing.UnitRing.finRingType; FinRing.Ring.eqType; Equality.sort;
 pred_of_argType] : FinRing.UnitRing.type >-> simpl_pred
[FinRing.UnitRing.finRingType; FinRing.Ring.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : FinRing.UnitRing.type >-> pred
[FinRing.UnitRing.finRingType; FinRing.Ring.sort] : FinRing.UnitRing.type >-> Sortclass
[FinRing.UnitRing.finRingType; FinRing.Ring.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : FinRing.UnitRing.type >-> Funclass
Ambiguous paths:
[FinRing.UnitRing.unitRingType; GRing.UnitRing.ringType] : FinRing.UnitRing.type >-> GRing.Ring.type
[FinRing.UnitRing.unitRingType; GRing.UnitRing.zmodType] : FinRing.UnitRing.type >-> GRing.Zmodule.type
[FinRing.UnitRing.unitRingType; GRing.UnitRing.choiceType] : FinRing.UnitRing.type >-> Choice.type
[FinRing.UnitRing.unitRingType; GRing.UnitRing.eqType] : FinRing.UnitRing.type >-> Equality.type
[FinRing.UnitRing.unitRingType; GRing.UnitRing.eqType; Equality.sort] : FinRing.UnitRing.type >-> predArgType
[FinRing.UnitRing.unitRingType; GRing.UnitRing.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : FinRing.UnitRing.type >-> pred_sort
[FinRing.UnitRing.unitRingType; GRing.UnitRing.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : FinRing.UnitRing.type >-> collective_pred
[FinRing.UnitRing.unitRingType; GRing.UnitRing.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : FinRing.UnitRing.type >-> applicative_pred
[FinRing.UnitRing.unitRingType; GRing.UnitRing.eqType; Equality.sort;
 pred_of_argType] : FinRing.UnitRing.type >-> simpl_pred
[FinRing.UnitRing.unitRingType; GRing.UnitRing.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : FinRing.UnitRing.type >-> pred
[FinRing.UnitRing.unitRingType; GRing.UnitRing.sort] : FinRing.UnitRing.type >-> Sortclass
[FinRing.UnitRing.unitRingType; GRing.UnitRing.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : FinRing.UnitRing.type >-> Funclass
Ambiguous paths:
[FinRing.ComUnitRing.base2; FinRing.ComRing.base; GRing.ComRing.mixin] : FinRing.ComUnitRing.class_of >-> commutative
[FinRing.ComUnitRing.base2; FinRing.ComRing.base] : FinRing.ComUnitRing.class_of >-> GRing.ComRing.class_of
[FinRing.ComUnitRing.base2; FinRing.ComRing.base; GRing.ComRing.base;
 GRing.Ring.mixin] : FinRing.ComUnitRing.class_of >-> GRing.Ring.mixin_of
[FinRing.ComUnitRing.base2; FinRing.ComRing.base; GRing.ComRing.base] : FinRing.ComUnitRing.class_of >-> GRing.Ring.class_of
[FinRing.ComUnitRing.base2; FinRing.ComRing.base; GRing.ComRing.base;
 GRing.Ring.base; GRing.Zmodule.mixin] : FinRing.ComUnitRing.class_of >-> GRing.Zmodule.mixin_of
[FinRing.ComUnitRing.base2; FinRing.ComRing.base; GRing.ComRing.base;
 GRing.Ring.base] : FinRing.ComUnitRing.class_of >-> GRing.Zmodule.class_of
[FinRing.ComUnitRing.base2; FinRing.ComRing.base; GRing.ComRing.base;
 GRing.Ring.base; GRing.Zmodule.base; Choice.base] : FinRing.ComUnitRing.class_of >-> Equality.mixin_of
[FinRing.ComUnitRing.base2; FinRing.ComRing.base; GRing.ComRing.base;
 GRing.Ring.base; GRing.Zmodule.base] : FinRing.ComUnitRing.class_of >-> Choice.class_of
Ambiguous paths:
[FinRing.ComUnitRing.base3; FinRing.UnitRing.base2] : FinRing.ComUnitRing.class_of >-> FinRing.Ring.class_of
[FinRing.ComUnitRing.base3; FinRing.UnitRing.base2; FinRing.Ring.base2] : FinRing.ComUnitRing.class_of >-> FinRing.Zmodule.class_of
[FinRing.ComUnitRing.base3; FinRing.UnitRing.base; GRing.UnitRing.mixin] : FinRing.ComUnitRing.class_of >-> GRing.UnitRing.mixin_of
[FinRing.ComUnitRing.base3; FinRing.UnitRing.base] : FinRing.ComUnitRing.class_of >-> GRing.UnitRing.class_of
[FinRing.ComUnitRing.base3; FinRing.UnitRing.base; GRing.UnitRing.base;
 GRing.Ring.mixin] : FinRing.ComUnitRing.class_of >-> GRing.Ring.mixin_of
[FinRing.ComUnitRing.base3; FinRing.UnitRing.base; GRing.UnitRing.base] : FinRing.ComUnitRing.class_of >-> GRing.Ring.class_of
[FinRing.ComUnitRing.base3; FinRing.UnitRing.base; GRing.UnitRing.base;
 GRing.Ring.base; GRing.Zmodule.mixin] : FinRing.ComUnitRing.class_of >-> GRing.Zmodule.mixin_of
[FinRing.ComUnitRing.base3; FinRing.UnitRing.base; GRing.UnitRing.base;
 GRing.Ring.base] : FinRing.ComUnitRing.class_of >-> GRing.Zmodule.class_of
[FinRing.ComUnitRing.base3; FinRing.UnitRing.base2; FinRing.Ring.base2;
 FinRing.Zmodule.mixin] : FinRing.ComUnitRing.class_of >-> Finite.mixin_of
[FinRing.ComUnitRing.base3; FinRing.UnitRing.base2; FinRing.Ring.base2;
 FinRing.Zmodule.mixin; Finite.mixin_base] : FinRing.ComUnitRing.class_of >-> Countable.mixin_of
[FinRing.ComUnitRing.base3; FinRing.UnitRing.base; GRing.UnitRing.base;
 GRing.Ring.base; GRing.Zmodule.base; Choice.base] : FinRing.ComUnitRing.class_of >-> Equality.mixin_of
[FinRing.ComUnitRing.base3; FinRing.UnitRing.base; GRing.UnitRing.base;
 GRing.Ring.base; GRing.Zmodule.base] : FinRing.ComUnitRing.class_of >-> Choice.class_of
Ambiguous paths:
[FinRing.ComUnitRing.eqType; Equality.sort] : FinRing.ComUnitRing.type >-> Sortclass
Ambiguous paths:
[FinRing.ComUnitRing.choiceType; Choice.eqType] : FinRing.ComUnitRing.type >-> Equality.type
[FinRing.ComUnitRing.choiceType; Choice.eqType; Equality.sort] : FinRing.ComUnitRing.type >-> predArgType
[FinRing.ComUnitRing.choiceType; Choice.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : FinRing.ComUnitRing.type >-> pred_sort
[FinRing.ComUnitRing.choiceType; Choice.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : FinRing.ComUnitRing.type >-> collective_pred
[FinRing.ComUnitRing.choiceType; Choice.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : FinRing.ComUnitRing.type >-> applicative_pred
[FinRing.ComUnitRing.choiceType; Choice.eqType; Equality.sort;
 pred_of_argType] : FinRing.ComUnitRing.type >-> simpl_pred
[FinRing.ComUnitRing.choiceType; Choice.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : FinRing.ComUnitRing.type >-> pred
[FinRing.ComUnitRing.choiceType; Choice.sort] : FinRing.ComUnitRing.type >-> Sortclass
[FinRing.ComUnitRing.choiceType; Choice.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : FinRing.ComUnitRing.type >-> Funclass
Ambiguous paths:
[FinRing.ComUnitRing.countType; Countable.choiceType] : FinRing.ComUnitRing.type >-> Choice.type
[FinRing.ComUnitRing.countType; Countable.eqType] : FinRing.ComUnitRing.type >-> Equality.type
[FinRing.ComUnitRing.countType; Countable.eqType; Equality.sort] : FinRing.ComUnitRing.type >-> predArgType
[FinRing.ComUnitRing.countType; Countable.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : FinRing.ComUnitRing.type >-> pred_sort
[FinRing.ComUnitRing.countType; Countable.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : FinRing.ComUnitRing.type >-> collective_pred
[FinRing.ComUnitRing.countType; Countable.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : FinRing.ComUnitRing.type >-> applicative_pred
[FinRing.ComUnitRing.countType; Countable.eqType; Equality.sort;
 pred_of_argType] : FinRing.ComUnitRing.type >-> simpl_pred
[FinRing.ComUnitRing.countType; Countable.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : FinRing.ComUnitRing.type >-> pred
[FinRing.ComUnitRing.countType; Countable.sort] : FinRing.ComUnitRing.type >-> Sortclass
[FinRing.ComUnitRing.countType; Countable.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : FinRing.ComUnitRing.type >-> Funclass
Ambiguous paths:
[FinRing.ComUnitRing.finType; Finite.countType] : FinRing.ComUnitRing.type >-> Countable.type
[FinRing.ComUnitRing.finType; Finite.choiceType] : FinRing.ComUnitRing.type >-> Choice.type
[FinRing.ComUnitRing.finType; Finite.eqType] : FinRing.ComUnitRing.type >-> Equality.type
[FinRing.ComUnitRing.finType; Finite.eqType; Equality.sort] : FinRing.ComUnitRing.type >-> predArgType
[FinRing.ComUnitRing.finType; Finite.eqType; Equality.sort; pred_of_argType;
 sort_of_simpl_pred] : FinRing.ComUnitRing.type >-> pred_sort
[FinRing.ComUnitRing.finType; Finite.eqType; Equality.sort; pred_of_argType;
 collective_pred_of_simpl] : FinRing.ComUnitRing.type >-> collective_pred
[FinRing.ComUnitRing.finType; Finite.eqType; Equality.sort; pred_of_argType;
 applicative_pred_of_simpl] : FinRing.ComUnitRing.type >-> applicative_pred
[FinRing.ComUnitRing.finType; Finite.eqType; Equality.sort; pred_of_argType] : FinRing.ComUnitRing.type >-> simpl_pred
[FinRing.ComUnitRing.finType; Finite.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl] : FinRing.ComUnitRing.type >-> pred
[FinRing.ComUnitRing.finType; Finite.sort] : FinRing.ComUnitRing.type >-> Sortclass
[FinRing.ComUnitRing.finType; Finite.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl; fun_of_pred] : FinRing.ComUnitRing.type >-> Funclass
Ambiguous paths:
[FinRing.ComUnitRing.zmodType; GRing.Zmodule.choiceType] : FinRing.ComUnitRing.type >-> Choice.type
[FinRing.ComUnitRing.zmodType; GRing.Zmodule.eqType] : FinRing.ComUnitRing.type >-> Equality.type
[FinRing.ComUnitRing.zmodType; GRing.Zmodule.eqType; Equality.sort] : FinRing.ComUnitRing.type >-> predArgType
[FinRing.ComUnitRing.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : FinRing.ComUnitRing.type >-> pred_sort
[FinRing.ComUnitRing.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : FinRing.ComUnitRing.type >-> collective_pred
[FinRing.ComUnitRing.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : FinRing.ComUnitRing.type >-> applicative_pred
[FinRing.ComUnitRing.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType] : FinRing.ComUnitRing.type >-> simpl_pred
[FinRing.ComUnitRing.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : FinRing.ComUnitRing.type >-> pred
[FinRing.ComUnitRing.zmodType; GRing.Zmodule.sort] : FinRing.ComUnitRing.type >-> Sortclass
[FinRing.ComUnitRing.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : FinRing.ComUnitRing.type >-> Funclass
Ambiguous paths:
[FinRing.ComUnitRing.finZmodType; FinRing.Zmodule.zmodType] : FinRing.ComUnitRing.type >-> GRing.Zmodule.type
[FinRing.ComUnitRing.finZmodType; FinRing.Zmodule.finType] : FinRing.ComUnitRing.type >-> Finite.type
[FinRing.ComUnitRing.finZmodType; FinRing.Zmodule.countType] : FinRing.ComUnitRing.type >-> Countable.type
[FinRing.ComUnitRing.finZmodType; FinRing.Zmodule.choiceType] : FinRing.ComUnitRing.type >-> Choice.type
[FinRing.ComUnitRing.finZmodType; FinRing.Zmodule.eqType] : FinRing.ComUnitRing.type >-> Equality.type
[FinRing.ComUnitRing.finZmodType; FinRing.Zmodule.eqType; Equality.sort] : FinRing.ComUnitRing.type >-> predArgType
[FinRing.ComUnitRing.finZmodType; FinRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : FinRing.ComUnitRing.type >-> pred_sort
[FinRing.ComUnitRing.finZmodType; FinRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : FinRing.ComUnitRing.type >-> collective_pred
[FinRing.ComUnitRing.finZmodType; FinRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : FinRing.ComUnitRing.type >-> applicative_pred
[FinRing.ComUnitRing.finZmodType; FinRing.Zmodule.eqType; Equality.sort;
 pred_of_argType] : FinRing.ComUnitRing.type >-> simpl_pred
[FinRing.ComUnitRing.finZmodType; FinRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : FinRing.ComUnitRing.type >-> pred
[FinRing.ComUnitRing.finZmodType; FinRing.Zmodule.sort] : FinRing.ComUnitRing.type >-> Sortclass
[FinRing.ComUnitRing.finZmodType; FinRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : FinRing.ComUnitRing.type >-> Funclass
Ambiguous paths:
[FinRing.ComUnitRing.ringType; GRing.Ring.zmodType] : FinRing.ComUnitRing.type >-> GRing.Zmodule.type
[FinRing.ComUnitRing.ringType; GRing.Ring.choiceType] : FinRing.ComUnitRing.type >-> Choice.type
[FinRing.ComUnitRing.ringType; GRing.Ring.eqType] : FinRing.ComUnitRing.type >-> Equality.type
[FinRing.ComUnitRing.ringType; GRing.Ring.eqType; Equality.sort] : FinRing.ComUnitRing.type >-> predArgType
[FinRing.ComUnitRing.ringType; GRing.Ring.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : FinRing.ComUnitRing.type >-> pred_sort
[FinRing.ComUnitRing.ringType; GRing.Ring.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : FinRing.ComUnitRing.type >-> collective_pred
[FinRing.ComUnitRing.ringType; GRing.Ring.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : FinRing.ComUnitRing.type >-> applicative_pred
[FinRing.ComUnitRing.ringType; GRing.Ring.eqType; Equality.sort;
 pred_of_argType] : FinRing.ComUnitRing.type >-> simpl_pred
[FinRing.ComUnitRing.ringType; GRing.Ring.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : FinRing.ComUnitRing.type >-> pred
[FinRing.ComUnitRing.ringType; GRing.Ring.sort] : FinRing.ComUnitRing.type >-> Sortclass
[FinRing.ComUnitRing.ringType; GRing.Ring.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : FinRing.ComUnitRing.type >-> Funclass
Ambiguous paths:
[FinRing.ComUnitRing.finRingType; FinRing.Ring.finZmodType] : FinRing.ComUnitRing.type >-> FinRing.Zmodule.type
[FinRing.ComUnitRing.finRingType; FinRing.Ring.finZmodType;
 FinRing.Zmodule.finGroupType] : FinRing.ComUnitRing.type >-> FinGroup.type
[FinRing.ComUnitRing.finRingType; FinRing.Ring.finZmodType;
 FinRing.Zmodule.baseFinGroupType; FinGroup.mixin] : FinRing.ComUnitRing.type >-> FinGroup.mixin_of
[FinRing.ComUnitRing.finRingType; FinRing.Ring.finZmodType;
 FinRing.Zmodule.baseFinGroupType] : FinRing.ComUnitRing.type >-> FinGroup.base_type
[FinRing.ComUnitRing.finRingType; FinRing.Ring.ringType] : FinRing.ComUnitRing.type >-> GRing.Ring.type
[FinRing.ComUnitRing.finRingType; FinRing.Ring.zmodType] : FinRing.ComUnitRing.type >-> GRing.Zmodule.type
[FinRing.ComUnitRing.finRingType; FinRing.Ring.finType] : FinRing.ComUnitRing.type >-> Finite.type
[FinRing.ComUnitRing.finRingType; FinRing.Ring.countType] : FinRing.ComUnitRing.type >-> Countable.type
[FinRing.ComUnitRing.finRingType; FinRing.Ring.choiceType] : FinRing.ComUnitRing.type >-> Choice.type
[FinRing.ComUnitRing.finRingType; FinRing.Ring.eqType] : FinRing.ComUnitRing.type >-> Equality.type
[FinRing.ComUnitRing.finRingType; FinRing.Ring.eqType; Equality.sort] : FinRing.ComUnitRing.type >-> predArgType
[FinRing.ComUnitRing.finRingType; FinRing.Ring.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : FinRing.ComUnitRing.type >-> pred_sort
[FinRing.ComUnitRing.finRingType; FinRing.Ring.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : FinRing.ComUnitRing.type >-> collective_pred
[FinRing.ComUnitRing.finRingType; FinRing.Ring.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : FinRing.ComUnitRing.type >-> applicative_pred
[FinRing.ComUnitRing.finRingType; FinRing.Ring.eqType; Equality.sort;
 pred_of_argType] : FinRing.ComUnitRing.type >-> simpl_pred
[FinRing.ComUnitRing.finRingType; FinRing.Ring.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : FinRing.ComUnitRing.type >-> pred
[FinRing.ComUnitRing.finRingType; FinRing.Ring.sort] : FinRing.ComUnitRing.type >-> Sortclass
[FinRing.ComUnitRing.finRingType; FinRing.Ring.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : FinRing.ComUnitRing.type >-> Funclass
Ambiguous paths:
[FinRing.ComUnitRing.comRingType; GRing.ComRing.ringType] : FinRing.ComUnitRing.type >-> GRing.Ring.type
[FinRing.ComUnitRing.comRingType; GRing.ComRing.zmodType] : FinRing.ComUnitRing.type >-> GRing.Zmodule.type
[FinRing.ComUnitRing.comRingType; GRing.ComRing.choiceType] : FinRing.ComUnitRing.type >-> Choice.type
[FinRing.ComUnitRing.comRingType; GRing.ComRing.eqType] : FinRing.ComUnitRing.type >-> Equality.type
[FinRing.ComUnitRing.comRingType; GRing.ComRing.eqType; Equality.sort] : FinRing.ComUnitRing.type >-> predArgType
[FinRing.ComUnitRing.comRingType; GRing.ComRing.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : FinRing.ComUnitRing.type >-> pred_sort
[FinRing.ComUnitRing.comRingType; GRing.ComRing.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : FinRing.ComUnitRing.type >-> collective_pred
[FinRing.ComUnitRing.comRingType; GRing.ComRing.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : FinRing.ComUnitRing.type >-> applicative_pred
[FinRing.ComUnitRing.comRingType; GRing.ComRing.eqType; Equality.sort;
 pred_of_argType] : FinRing.ComUnitRing.type >-> simpl_pred
[FinRing.ComUnitRing.comRingType; GRing.ComRing.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : FinRing.ComUnitRing.type >-> pred
[FinRing.ComUnitRing.comRingType; GRing.ComRing.sort] : FinRing.ComUnitRing.type >-> Sortclass
[FinRing.ComUnitRing.comRingType; GRing.ComRing.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : FinRing.ComUnitRing.type >-> Funclass
Ambiguous paths:
[FinRing.ComUnitRing.finComRingType; FinRing.ComRing.finRingType] : FinRing.ComUnitRing.type >-> FinRing.Ring.type
[FinRing.ComUnitRing.finComRingType; FinRing.ComRing.finZmodType] : FinRing.ComUnitRing.type >-> FinRing.Zmodule.type
[FinRing.ComUnitRing.finComRingType; FinRing.ComRing.finZmodType;
 FinRing.Zmodule.finGroupType] : FinRing.ComUnitRing.type >-> FinGroup.type
[FinRing.ComUnitRing.finComRingType; FinRing.ComRing.finZmodType;
 FinRing.Zmodule.baseFinGroupType; FinGroup.mixin] : FinRing.ComUnitRing.type >-> FinGroup.mixin_of
[FinRing.ComUnitRing.finComRingType; FinRing.ComRing.finZmodType;
 FinRing.Zmodule.baseFinGroupType] : FinRing.ComUnitRing.type >-> FinGroup.base_type
[FinRing.ComUnitRing.finComRingType; FinRing.ComRing.comRingType] : FinRing.ComUnitRing.type >-> GRing.ComRing.type
[FinRing.ComUnitRing.finComRingType; FinRing.ComRing.ringType] : FinRing.ComUnitRing.type >-> GRing.Ring.type
[FinRing.ComUnitRing.finComRingType; FinRing.ComRing.zmodType] : FinRing.ComUnitRing.type >-> GRing.Zmodule.type
[FinRing.ComUnitRing.finComRingType; FinRing.ComRing.finType] : FinRing.ComUnitRing.type >-> Finite.type
[FinRing.ComUnitRing.finComRingType; FinRing.ComRing.countType] : FinRing.ComUnitRing.type >-> Countable.type
[FinRing.ComUnitRing.finComRingType; FinRing.ComRing.choiceType] : FinRing.ComUnitRing.type >-> Choice.type
[FinRing.ComUnitRing.finComRingType; FinRing.ComRing.eqType] : FinRing.ComUnitRing.type >-> Equality.type
[FinRing.ComUnitRing.finComRingType; FinRing.ComRing.eqType; Equality.sort] : FinRing.ComUnitRing.type >-> predArgType
[FinRing.ComUnitRing.finComRingType; FinRing.ComRing.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : FinRing.ComUnitRing.type >-> pred_sort
[FinRing.ComUnitRing.finComRingType; FinRing.ComRing.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : FinRing.ComUnitRing.type >-> collective_pred
[FinRing.ComUnitRing.finComRingType; FinRing.ComRing.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : FinRing.ComUnitRing.type >-> applicative_pred
[FinRing.ComUnitRing.finComRingType; FinRing.ComRing.eqType; Equality.sort;
 pred_of_argType] : FinRing.ComUnitRing.type >-> simpl_pred
[FinRing.ComUnitRing.finComRingType; FinRing.ComRing.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : FinRing.ComUnitRing.type >-> pred
[FinRing.ComUnitRing.finComRingType; FinRing.ComRing.sort] : FinRing.ComUnitRing.type >-> Sortclass
[FinRing.ComUnitRing.finComRingType; FinRing.ComRing.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : FinRing.ComUnitRing.type >-> Funclass
Ambiguous paths:
[FinRing.ComUnitRing.unitRingType; GRing.UnitRing.ringType] : FinRing.ComUnitRing.type >-> GRing.Ring.type
[FinRing.ComUnitRing.unitRingType; GRing.UnitRing.zmodType] : FinRing.ComUnitRing.type >-> GRing.Zmodule.type
[FinRing.ComUnitRing.unitRingType; GRing.UnitRing.choiceType] : FinRing.ComUnitRing.type >-> Choice.type
[FinRing.ComUnitRing.unitRingType; GRing.UnitRing.eqType] : FinRing.ComUnitRing.type >-> Equality.type
[FinRing.ComUnitRing.unitRingType; GRing.UnitRing.eqType; Equality.sort] : FinRing.ComUnitRing.type >-> predArgType
[FinRing.ComUnitRing.unitRingType; GRing.UnitRing.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : FinRing.ComUnitRing.type >-> pred_sort
[FinRing.ComUnitRing.unitRingType; GRing.UnitRing.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : FinRing.ComUnitRing.type >-> collective_pred
[FinRing.ComUnitRing.unitRingType; GRing.UnitRing.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : FinRing.ComUnitRing.type >-> applicative_pred
[FinRing.ComUnitRing.unitRingType; GRing.UnitRing.eqType; Equality.sort;
 pred_of_argType] : FinRing.ComUnitRing.type >-> simpl_pred
[FinRing.ComUnitRing.unitRingType; GRing.UnitRing.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : FinRing.ComUnitRing.type >-> pred
[FinRing.ComUnitRing.unitRingType; GRing.UnitRing.sort] : FinRing.ComUnitRing.type >-> Sortclass
[FinRing.ComUnitRing.unitRingType; GRing.UnitRing.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : FinRing.ComUnitRing.type >-> Funclass
Ambiguous paths:
[FinRing.ComUnitRing.finUnitRingType; FinRing.UnitRing.finRingType] : FinRing.ComUnitRing.type >-> FinRing.Ring.type
[FinRing.ComUnitRing.finUnitRingType; FinRing.UnitRing.finZmodType] : FinRing.ComUnitRing.type >-> FinRing.Zmodule.type
[FinRing.ComUnitRing.finUnitRingType; FinRing.UnitRing.finZmodType;
 FinRing.Zmodule.finGroupType] : FinRing.ComUnitRing.type >-> FinGroup.type
[FinRing.ComUnitRing.finUnitRingType; FinRing.UnitRing.finZmodType;
 FinRing.Zmodule.baseFinGroupType; FinGroup.mixin] : FinRing.ComUnitRing.type >-> FinGroup.mixin_of
[FinRing.ComUnitRing.finUnitRingType; FinRing.UnitRing.finZmodType;
 FinRing.Zmodule.baseFinGroupType] : FinRing.ComUnitRing.type >-> FinGroup.base_type
[FinRing.ComUnitRing.finUnitRingType; FinRing.UnitRing.unitRingType] : FinRing.ComUnitRing.type >-> GRing.UnitRing.type
[FinRing.ComUnitRing.finUnitRingType; FinRing.UnitRing.ringType] : FinRing.ComUnitRing.type >-> GRing.Ring.type
[FinRing.ComUnitRing.finUnitRingType; FinRing.UnitRing.zmodType] : FinRing.ComUnitRing.type >-> GRing.Zmodule.type
[FinRing.ComUnitRing.finUnitRingType; FinRing.UnitRing.finType] : FinRing.ComUnitRing.type >-> Finite.type
[FinRing.ComUnitRing.finUnitRingType; FinRing.UnitRing.countType] : FinRing.ComUnitRing.type >-> Countable.type
[FinRing.ComUnitRing.finUnitRingType; FinRing.UnitRing.choiceType] : FinRing.ComUnitRing.type >-> Choice.type
[FinRing.ComUnitRing.finUnitRingType; FinRing.UnitRing.eqType] : FinRing.ComUnitRing.type >-> Equality.type
[FinRing.ComUnitRing.finUnitRingType; FinRing.UnitRing.eqType; Equality.sort] : FinRing.ComUnitRing.type >-> predArgType
[FinRing.ComUnitRing.finUnitRingType; FinRing.UnitRing.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : FinRing.ComUnitRing.type >-> pred_sort
[FinRing.ComUnitRing.finUnitRingType; FinRing.UnitRing.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : FinRing.ComUnitRing.type >-> collective_pred
[FinRing.ComUnitRing.finUnitRingType; FinRing.UnitRing.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : FinRing.ComUnitRing.type >-> applicative_pred
[FinRing.ComUnitRing.finUnitRingType; FinRing.UnitRing.eqType; Equality.sort;
 pred_of_argType] : FinWarning: Ignoring canonical projection to GRing.Zmodule.sort by FinGroup.sort in FinRing.ComUnitRing.join_baseFinGroupType: redundant with FinRing.Zmodule.join_baseFinGroupType
Ring.ComUnitRing.type >-> simpl_pred
[FinRing.ComUnitRing.finUnitRingType; FinRing.UnitRing.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : FinRing.ComUnitRing.type >-> pred
[FinRing.ComUnitRing.finUnitRingType; FinRing.UnitRing.sort] : FinRing.ComUnitRing.type >-> Sortclass
[FinRing.ComUnitRing.finUnitRingType; FinRing.UnitRing.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : FinRing.ComUnitRing.type >-> Funclass
Ambiguous paths:
[FinRing.ComUnitRing.comUnitRingType; GRing.ComUnitRing.unitRingType] : FinRing.ComUnitRing.type >-> GRing.UnitRing.type
[FinRing.ComUnitRing.comUnitRingType; GRing.ComUnitRing.comRingType] : FinRing.ComUnitRing.type >-> GRing.ComRing.type
[FinRing.ComUnitRing.comUnitRingType; GRing.ComUnitRing.ringType] : FinRing.ComUnitRing.type >-> GRing.Ring.type
[FinRing.ComUnitRing.comUnitRingType; GRing.ComUnitRing.zmodType] : FinRing.ComUnitRing.type >-> GRing.Zmodule.type
[FinRing.ComUnitRing.comUnitRingType; GRing.ComUnitRing.choiceType] : FinRing.ComUnitRing.type >-> Choice.type
[FinRing.ComUnitRing.comUnitRingType; GRing.ComUnitRing.eqType] : FinRing.ComUnitRing.type >-> Equality.type
[FinRing.ComUnitRing.comUnitRingType; GRing.ComUnitRing.eqType; Equality.sort] : FinRing.ComUnitRing.type >-> predArgType
[FinRing.ComUnitRing.comUnitRingType; GRing.ComUnitRing.eqType;
 Equality.sort; pred_of_argType; sort_of_simpl_pred] : FinRing.ComUnitRing.type >-> pred_sort
[FinRing.ComUnitRing.comUnitRingType; GRing.ComUnitRing.eqType;
 Equality.sort; pred_of_argType; collective_pred_of_simpl] : FinRing.ComUnitRing.type >-> collective_pred
[FinRing.ComUnitRing.comUnitRingType; GRing.ComUnitRing.eqType;
 Equality.sort; pred_of_argType; applicative_pred_of_simpl] : FinRing.ComUnitRing.type >-> applicative_pred
[FinRing.ComUnitRing.comUnitRingType; GRing.ComUnitRing.eqType;
 Equality.sort; pred_of_argType] : FinRing.ComUnitRing.type >-> simpl_pred
[FinRing.ComUnitRing.comUnitRingType; GRing.ComUnitRing.eqType;
 Equality.sort; pred_of_argType; pred_of_simpl] : FinRing.ComUnitRing.type >-> pred
[FinRing.ComUnitRing.comUnitRingType; GRing.ComUnitRing.sort] : FinRing.ComUnitRing.type >-> Sortclass
[FinRing.ComUnitRing.comUnitRingType; GRing.ComUnitRing.eqType;
 Equality.sort; pred_of_argType; pred_of_simpl; fun_of_pred] : FinRing.ComUnitRing.type >-> Funclass
Ambiguous paths:
[FinRing.IntegralDomain.base2; FinRing.ComUnitRing.base] : FinRing.IntegralDomain.class_of >-> GRing.ComUnitRing.class_of
[FinRing.IntegralDomain.base2; FinRing.ComUnitRing.base;
 GRing.ComUnitRing.mixin] : FinRing.IntegralDomain.class_of >-> GRing.UnitRing.mixin_of
[FinRing.IntegralDomain.base2; FinRing.ComUnitRing.base;
 GRing.ComUnitRing.base2] : FinRing.IntegralDomain.class_of >-> GRing.UnitRing.class_of
[FinRing.IntegralDomain.base2; FinRing.ComUnitRing.base;
 GRing.ComUnitRing.base; GRing.ComRing.mixin] : FinRing.IntegralDomain.class_of >-> commutative
[FinRing.IntegralDomain.base2; FinRing.ComUnitRing.base;
 GRing.ComUnitRing.base] : FinRing.IntegralDomain.class_of >-> GRing.ComRing.class_of
[FinRing.IntegralDomain.base2; FinRing.ComUnitRing.base;
 GRing.ComUnitRing.base; GRing.ComRing.base; GRing.Ring.mixin] : FinRing.IntegralDomain.class_of >-> GRing.Ring.mixin_of
[FinRing.IntegralDomain.base2; FinRing.ComUnitRing.base;
 GRing.ComUnitRing.base; GRing.ComRing.base] : FinRing.IntegralDomain.class_of >-> GRing.Ring.class_of
[FinRing.IntegralDomain.base2; FinRing.ComUnitRing.base;
 GRing.ComUnitRing.base; GRing.ComRing.base; GRing.Ring.base;
 GRing.Zmodule.mixin] : FinRing.IntegralDomain.class_of >-> GRing.Zmodule.mixin_of
[FinRing.IntegralDomain.base2; FinRing.ComUnitRing.base;
 GRing.ComUnitRing.base; GRing.ComRing.base; GRing.Ring.base] : FinRing.IntegralDomain.class_of >-> GRing.Zmodule.class_of
[FinRing.IntegralDomain.base2; FinRing.ComUnitRing.base;
 GRing.ComUnitRing.base; GRing.ComRing.base; GRing.Ring.base;
 GRing.Zmodule.base; Choice.base] : FinRing.IntegralDomain.class_of >-> Equality.mixin_of
[FinRing.IntegralDomain.base2; FinRing.ComUnitRing.base;
 GRing.ComUnitRing.base; GRing.ComRing.base; GRing.Ring.base;
 GRing.Zmodule.base] : FinRing.IntegralDomain.class_of >-> Choice.class_of
Ambiguous paths:
[FinRing.IntegralDomain.eqType; Equality.sort] : FinRing.IntegralDomain.type >-> Sortclass
Ambiguous paths:
[FinRing.IntegralDomain.choiceType; Choice.eqType] : FinRing.IntegralDomain.type >-> Equality.type
[FinRing.IntegralDomain.choiceType; Choice.eqType; Equality.sort] : FinRing.IntegralDomain.type >-> predArgType
[FinRing.IntegralDomain.choiceType; Choice.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : FinRing.IntegralDomain.type >-> pred_sort
[FinRing.IntegralDomain.choiceType; Choice.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : FinRing.IntegralDomain.type >-> collective_pred
[FinRing.IntegralDomain.choiceType; Choice.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : FinRing.IntegralDomain.type >-> applicative_pred
[FinRing.IntegralDomain.choiceType; Choice.eqType; Equality.sort;
 pred_of_argType] : FinRing.IntegralDomain.type >-> simpl_pred
[FinRing.IntegralDomain.choiceType; Choice.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : FinRing.IntegralDomain.type >-> pred
[FinRing.IntegralDomain.choiceType; Choice.sort] : FinRing.IntegralDomain.type >-> Sortclass
[FinRing.IntegralDomain.choiceType; Choice.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : FinRing.IntegralDomain.type >-> Funclass
Ambiguous paths:
[FinRing.IntegralDomain.countType; Countable.choiceType] : FinRing.IntegralDomain.type >-> Choice.type
[FinRing.IntegralDomain.countType; Countable.eqType] : FinRing.IntegralDomain.type >-> Equality.type
[FinRing.IntegralDomain.countType; Countable.eqType; Equality.sort] : FinRing.IntegralDomain.type >-> predArgType
[FinRing.IntegralDomain.countType; Countable.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : FinRing.IntegralDomain.type >-> pred_sort
[FinRing.IntegralDomain.countType; Countable.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : FinRing.IntegralDomain.type >-> collective_pred
[FinRing.IntegralDomain.countType; Countable.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : FinRing.IntegralDomain.type >-> applicative_pred
[FinRing.IntegralDomain.countType; Countable.eqType; Equality.sort;
 pred_of_argType] : FinRing.IntegralDomain.type >-> simpl_pred
[FinRing.IntegralDomain.countType; Countable.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : FinRing.IntegralDomain.type >-> pred
[FinRing.IntegralDomain.countType; Countable.sort] : FinRing.IntegralDomain.type >-> Sortclass
[FinRing.IntegralDomain.countType; Countable.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : FinRing.IntegralDomain.type >-> Funclass
Ambiguous paths:
[FinRing.IntegralDomain.finType; Finite.countType] : FinRing.IntegralDomain.type >-> Countable.type
[FinRing.IntegralDomain.finType; Finite.choiceType] : FinRing.IntegralDomain.type >-> Choice.type
[FinRing.IntegralDomain.finType; Finite.eqType] : FinRing.IntegralDomain.type >-> Equality.type
[FinRing.IntegralDomain.finType; Finite.eqType; Equality.sort] : FinRing.IntegralDomain.type >-> predArgType
[FinRing.IntegralDomain.finType; Finite.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : FinRing.IntegralDomain.type >-> pred_sort
[FinRing.IntegralDomain.finType; Finite.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : FinRing.IntegralDomain.type >-> collective_pred
[FinRing.IntegralDomain.finType; Finite.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : FinRing.IntegralDomain.type >-> applicative_pred
[FinRing.IntegralDomain.finType; Finite.eqType; Equality.sort;
 pred_of_argType] : FinRing.IntegralDomain.type >-> simpl_pred
[FinRing.IntegralDomain.finType; Finite.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : FinRing.IntegralDomain.type >-> pred
[FinRing.IntegralDomain.finType; Finite.sort] : FinRing.IntegralDomain.type >-> Sortclass
[FinRing.IntegralDomain.finType; Finite.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : FinRing.IntegralDomain.type >-> Funclass
Ambiguous paths:
[FinRing.IntegralDomain.zmodType; GRing.Zmodule.choiceType] : FinRing.IntegralDomain.type >-> Choice.type
[FinRing.IntegralDomain.zmodType; GRing.Zmodule.eqType] : FinRing.IntegralDomain.type >-> Equality.type
[FinRing.IntegralDomain.zmodType; GRing.Zmodule.eqType; Equality.sort] : FinRing.IntegralDomain.type >-> predArgType
[FinRing.IntegralDomain.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : FinRing.IntegralDomain.type >-> pred_sort
[FinRing.IntegralDomain.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : FinRing.IntegralDomain.type >-> collective_pred
[FinRing.IntegralDomain.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : FinRing.IntegralDomain.type >-> applicative_pred
[FinRing.IntegralDomain.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType] : FinRing.IntegralDomain.type >-> simpl_pred
[FinRing.IntegralDomain.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : FinRing.IntegralDomain.type >-> pred
[FinRing.IntegralDomain.zmodType; GRing.Zmodule.sort] : FinRing.IntegralDomain.type >-> Sortclass
[FinRing.IntegralDomain.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : FinRing.IntegralDomain.type >-> Funclass
Ambiguous paths:
[FinRing.IntegralDomain.finZmodType; FinRing.Zmodule.zmodType] : FinRing.IntegralDomain.type >-> GRing.Zmodule.type
[FinRing.IntegralDomain.finZmodType; FinRing.Zmodule.finType] : FinRing.IntegralDomain.type >-> Finite.type
[FinRing.IntegralDomain.finZmodType; FinRing.Zmodule.countType] : FinRing.IntegralDomain.type >-> Countable.type
[FinRing.IntegralDomain.finZmodType; FinRing.Zmodule.choiceType] : FinRing.IntegralDomain.type >-> Choice.type
[FinRing.IntegralDomain.finZmodType; FinRing.Zmodule.eqType] : FinRing.IntegralDomain.type >-> Equality.type
[FinRing.IntegralDomain.finZmodType; FinRing.Zmodule.eqType; Equality.sort] : FinRing.IntegralDomain.type >-> predArgType
[FinRing.IntegralDomain.finZmodType; FinRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : FinRing.IntegralDomain.type >-> pred_sort
[FinRing.IntegralDomain.finZmodType; FinRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : FinRing.IntegralDomain.type >-> collective_pred
[FinRing.IntegralDomain.finZmodType; FinRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : FinRing.IntegralDomain.type >-> applicative_pred
[FinRing.IntegralDomain.finZmodType; FinRing.Zmodule.eqType; Equality.sort;
 pred_of_argType] : FinRing.IntegralDomain.type >-> simpl_pred
[FinRing.IntegralDomain.finZmodType; FinRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : FinRing.IntegralDomain.type >-> pred
[FinRing.IntegralDomain.finZmodType; FinRing.Zmodule.sort] : FinRing.IntegralDomain.type >-> Sortclass
[FinRing.IntegralDomain.finZmodType; FinRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : FinRing.IntegralDomain.type >-> Funclass
Ambiguous paths:
[FinRing.IntegralDomain.ringType; GRing.Ring.zmodType] : FinRing.IntegralDomain.type >-> GRing.Zmodule.type
[FinRing.IntegralDomain.ringType; GRing.Ring.choiceType] : FinRing.IntegralDomain.type >-> Choice.type
[FinRing.IntegralDomain.ringType; GRing.Ring.eqType] : FinRing.IntegralDomain.type >-> Equality.type
[FinRing.IntegralDomain.ringType; GRing.Ring.eqType; Equality.sort] : FinRing.IntegralDomain.type >-> predArgType
[FinRing.IntegralDomain.ringType; GRing.Ring.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : FinRing.IntegralDomain.type >-> pred_sort
[FinRing.IntegralDomain.ringType; GRing.Ring.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : FinRing.IntegralDomain.type >-> collective_pred
[FinRing.IntegralDomain.ringType; GRing.Ring.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : FinRing.IntegralDomain.type >-> applicative_pred
[FinRing.IntegralDomain.ringType; GRing.Ring.eqType; Equality.sort;
 pred_of_argType] : FinRing.IntegralDomain.type >-> simpl_pred
[FinRing.IntegralDomain.ringType; GRing.Ring.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : FinRing.IntegralDomain.type >-> pred
[FinRing.IntegralDomain.ringType; GRing.Ring.sort] : FinRing.IntegralDomain.type >-> Sortclass
[FinRing.IntegralDomain.ringType; GRing.Ring.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : FinRing.IntegralDomain.type >-> Funclass
Ambiguous paths:
[FinRing.IntegralDomain.finRingType; FinRing.Ring.finZmodType] : FinRing.IntegralDomain.type >-> FinRing.Zmodule.type
[FinRing.IntegralDomain.finRingType; FinRing.Ring.finZmodType;
 FinRing.Zmodule.finGroupType] : FinRing.IntegralDomain.type >-> FinGroup.type
[FinRing.IntegralDomain.finRingType; FinRing.Ring.finZmodType;
 FinRing.Zmodule.baseFinGroupType; FinGroup.mixin] : FinRing.IntegralDomain.type >-> FinGroup.mixin_of
[FinRing.IntegralDomain.finRingType; FinRing.Ring.finZmodType;
 FinRing.Zmodule.baseFinGroupType] : FinRing.IntegralDomain.type >-> FinGroup.base_type
[FinRing.IntegralDomain.finRingType; FinRing.Ring.ringType] : FinRing.IntegralDomain.type >-> GRing.Ring.type
[FinRing.IntegralDomain.finRingType; FinRing.Ring.zmodType] : FinRing.IntegralDomain.type >-> GRing.Zmodule.type
[FinRing.IntegralDomain.finRingType; FinRing.Ring.finType] : FinRing.IntegralDomain.type >-> Finite.type
[FinRing.IntegralDomain.finRingType; FinRing.Ring.countType] : FinRing.IntegralDomain.type >-> Countable.type
[FinRing.IntegralDomain.finRingType; FinRing.Ring.choiceType] : FinRing.IntegralDomain.type >-> Choice.type
[FinRing.IntegralDomain.finRingType; FinRing.Ring.eqType] : FinRing.IntegralDomain.type >-> Equality.type
[FinRing.IntegralDomain.finRingType; FinRing.Ring.eqType; Equality.sort] : FinRing.IntegralDomain.type >-> predArgType
[FinRing.IntegralDomain.finRingType; FinRing.Ring.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : FinRing.IntegralDomain.type >-> pred_sort
[FinRing.IntegralDomain.finRingType; FinRing.Ring.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : FinRing.IntegralDomain.type >-> collective_pred
[FinRing.IntegralDomain.finRingType; FinRing.Ring.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : FinRing.IntegralDomain.type >-> applicative_pred
[FinRing.IntegralDomain.finRingType; FinRing.Ring.eqType; Equality.sort;
 pred_of_argType] : FinRing.IntegralDomain.type >-> simpl_pred
[FinRing.IntegralDomain.finRingType; FinRing.Ring.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : FinRing.IntegralDomain.type >-> pred
[FinRing.IntegralDomain.finRingType; FinRing.Ring.sort] : FinRing.IntegralDomain.type >-> Sortclass
[FinRing.IntegralDomain.finRingType; FinRing.Ring.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : FinRing.IntegralDomain.type >-> Funclass
Ambiguous paths:
[FinRing.IntegralDomain.comRingType; GRing.ComRing.ringType] : FinRing.IntegralDomain.type >-> GRing.Ring.type
[FinRing.IntegralDomain.comRingType; GRing.ComRing.zmodType] : FinRing.IntegralDomain.type >-> GRing.Zmodule.type
[FinRing.IntegralDomain.comRingType; GRing.ComRing.choiceType] : FinRing.IntegralDomain.type >-> Choice.type
[FinRing.IntegralDomain.comRingType; GRing.ComRing.eqType] : FinRing.IntegralDomain.type >-> Equality.type
[FinRing.IntegralDomain.comRingType; GRing.ComRing.eqType; Equality.sort] : FinRing.IntegralDomain.type >-> predArgType
[FinRing.IntegralDomain.comRingType; GRing.ComRing.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : FinRing.IntegralDomain.type >-> pred_sort
[FinRing.IntegralDomain.comRingType; GRing.ComRing.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : FinRing.IntegralDomain.type >-> collective_pred
[FinRing.IntegralDomain.comRingType; GRing.ComRing.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : FinRing.IntegralDomain.type >-> applicative_pred
[FinRing.IntegralDomain.comRingType; GRing.ComRing.eqType; Equality.sort;
 pred_of_argType] : FinRing.IntegralDomain.type >-> simpl_pred
[FinRing.IntegralDomain.comRingType; GRing.ComRing.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : FinRing.IntegralDomain.type >-> pred
[FinRing.IntegralDomain.comRingType; GRing.ComRing.sort] : FinRing.IntegralDomain.type >-> Sortclass
[FinRing.IntegralDomain.comRingType; GRing.ComRing.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : FinRing.IntegralDomain.type >-> Funclass
Ambiguous paths:
[FinRing.IntegralDomain.finComRingType; FinRing.ComRing.finRingType] : FinRing.IntegralDomain.type >-> FinRing.Ring.type
[FinRing.IntegralDomain.finComRingType; FinRing.ComRing.finZmodType] : FinRing.IntegralDomain.type >-> FinRing.Zmodule.type
[FinRing.IntegralDomain.finComRingType; FinRing.ComRing.finZmodType;
 FinRing.Zmodule.finGroupType] : FinRing.IntegralDomain.type >-> FinGroup.type
[FinRing.IntegralDomain.finComRingType; FinRing.ComRing.finZmodType;
 FinRing.Zmodule.baseFinGroupType; FinGroup.mixin] : FinRing.IntegralDomain.type >-> FinGroup.mixin_of
[FinRing.IntegralDomain.finComRingType; FinRing.ComRing.finZmodType;
 FinRing.Zmodule.baseFinGroupType] : FinRing.IntegralDomain.type >-> FinGroup.base_type
[FinRing.IntegralDomain.finComRingType; FinRing.ComRing.comRingType] : FinRing.IntegralDomain.type >-> GRing.ComRing.type
[FinRing.IntegralDomain.finComRingType; FinRing.ComRing.ringType] : FinRing.IntegralDomain.type >-> GRing.Ring.type
[FinRing.IntegralDomain.finComRingType; FinRing.ComRing.zmodType] : FinRing.IntegralDomain.type >-> GRing.Zmodule.type
[FinRing.IntegralDomain.finComRingType; FinRing.ComRing.finType] : FinRing.IntegralDomain.type >-> Finite.type
[FinRing.IntegralDomain.finComRingType; FinRing.ComRing.countType] : FinRing.IntegralDomain.type >-> Countable.type
[FinRing.IntegralDomain.finComRingType; FinRing.ComRing.choiceType] : FinRing.IntegralDomain.type >-> Choice.type
[FinRing.IntegralDomain.finComRingType; FinRing.ComRing.eqType] : FinRing.IntegralDomain.type >-> Equality.type
[FinRing.IntegralDomain.finComRingType; FinRing.ComRing.eqType; Equality.sort] : FinRing.IntegralDomain.type >-> predArgType
[FinRing.IntegralDomain.finComRingType; FinRing.ComRing.eqType;
 Equality.sort; pred_of_argType; sort_of_simpl_pred] : FinRing.IntegralDomain.type >-> pred_sort
[FinRing.IntegralDomain.finComRingType; FinRing.ComRing.eqType;
 Equality.sort; pred_of_argType; collective_pred_of_simpl] : FinRing.IntegralDomain.type >-> collective_pred
[FinRing.IntegralDomain.finComRingType; FinRing.ComRing.eqType;
 Equality.sort; pred_of_argType; applicative_pred_of_simpl] : FinRing.IntegralDomain.type >-> applicative_pred
[FinRing.IntegralDomain.finComRingType; FinRing.ComRing.eqType;
 Equality.sort; pred_of_argType] : FinRing.IntegralDomain.type >-> simpl_pred
[FinRing.IntegralDomain.finComRingType; FinRing.ComRing.eqType;
 Equality.sort; pred_of_argType; pred_of_simpl] : FinRing.IntegralDomain.type >-> pred
[FinRing.IntegralDomain.finComRingType; FinRing.ComRing.sort] : FinRing.IntegralDomain.type >-> Sortclass
[FinRing.IntegralDomain.finComRingType; FinRing.ComRing.eqType;
 Equality.sort; pred_of_argType; pred_of_simpl; fun_of_pred] : FinRing.IntegralDomain.type >-> Funclass
Ambiguous paths:
[FinRing.IntegralDomain.unitRingType; GRing.UnitRing.ringType] : FinRing.IntegralDomain.type >-> GRing.Ring.type
[FinRing.IntegralDomain.unitRingType; GRing.UnitRing.zmodType] : FinRing.IntegralDomain.type >-> GRing.Zmodule.type
[FinRing.IntegralDomain.unitRingType; GRing.UnitRing.choiceType] : FinRing.IntegralDomain.type >-> Choice.type
[FinRing.IntegralDomain.unitRingType; GRing.UnitRing.eqType] : FinRing.IntegralDomain.type >-> Equality.type
[FinRing.IntegralDomain.unitRingType; GRing.UnitRing.eqType; Equality.sort] : FinRing.IntegralDomain.type >-> predArgType
[FinRing.IntegralDomain.unitRingType; GRing.UnitRing.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : FinRing.IntegralDomain.type >-> pred_sort
[FinRing.IntegralDomain.unitRingType; GRing.UnitRing.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : FinRing.IntegralDomain.type >-> collective_pred
[FinRing.IntegralDomain.unitRingType; GRing.UnitRing.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : FinRing.IntegralDomain.type >-> applicative_pred
[FinRing.IntegralDomain.unitRingType; GRing.UnitRing.eqType; Equality.sort;
 pred_of_argType] : FinRing.IntegralDomain.type >-> simpl_pred
[FinRing.IntegralDomain.unitRingType; GRing.UnitRing.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : FinRing.IntegralDomain.type >-> pred
[FinRing.IntegralDomain.unitRingType; GRing.UnitRing.sort] : FinRing.IntegralDomain.type >-> Sortclass
[FinRing.IntegralDomain.unitRingType; GRing.UnitRing.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : FinRing.IntegralDomain.type >-> Funclass
Ambiguous paths:
[FinRing.IntegralDomain.finUnitRingType; FinRing.UnitRing.finRingType] : FinRing.IntegralDomain.type >-> FinRing.Ring.type
[FinRing.IntegralDomain.finUnitRingType; FinRing.UnitRing.finZmodType] : FinRing.IntegralDomain.type >-> FinRing.Zmodule.type
[FinRing.IntegralDomain.finUnitRingType; FinRing.UnitRing.finZmodType;
 FinRing.Zmodule.finGroupType] : FinRing.IntegralDomain.type >-> FinGroup.type
[FinRing.IntegralDomain.finUnitRingType; FinRing.UnitRing.finZmodType;
 FinRing.Zmodule.baseFinGroupType; FinGroup.mixin] : FinRing.IntegralDomain.type >-> FinGroup.mixin_of
[FinRing.IntegralDomain.finUnitRingType; FinRing.UnitRing.finZmodType;
 FinRing.Zmodule.baseFinGroupType] : FinRing.IntegralDomain.type >-> FinGroup.base_type
[FinRing.IntegralDomain.finUnitRingType; FinRing.UnitRing.unitRingType] : FinRing.IntegralDomain.type >-> GRing.UnitRing.type
[FinRing.IntegralDomain.finUnitRingType; FinRing.UnitRing.ringType] : FinRing.IntegralDomain.type >-> GRing.Ring.type
[FinRing.IntegralDomain.finUnitRingType; FinRing.UnitRing.zmodType] : FinRing.IntegralDomain.type >-> GRing.Zmodule.type
[FinRing.IntegralDomain.finUnitRingType; FinRing.UnitRing.finType] : FinRing.IntegralDomain.type >-> Finite.type
[FinRing.IntegralDomain.finUnitRingType; FinRing.UnitRing.countType] : FinRing.IntegralDomain.type >-> Countable.type
[FinRing.IntegralDomain.finUnitRingType; FinRing.UnitRing.choiceType] : FinRing.IntegralDomain.type >-> Choice.type
[FinRing.IntegralDomain.finUnitRingType; FinRing.UnitRing.eqType] : FinRing.IntegralDomain.type >-> Equality.type
[FinRing.IntegralDomain.finUnitRingType; FinRing.UnitRing.eqType;
 Equality.sort] : FinRing.IntegralDomain.type >-> predArgType
[FinRing.IntegralDomain.finUnitRingType; FinRing.UnitRing.eqType;
 Equality.sort; pred_of_argType; sort_of_simpl_pred] : FinRing.IntegralDomain.type >-> pred_sort
[FinRing.IntegralDomain.finUnitRingType; FinRing.UnitRing.eqType;
 Equality.sort; pred_of_argType; collective_pred_of_simpl] : FinRing.IntegralDomain.type >-> collective_pred
[FinRing.IntegralDomain.finUnitRingType; FinRing.UnitRing.eqType;
 Equality.sort; pred_of_argType; applicative_pred_of_simpl] : FinRing.IntegralDomain.type >-> applicative_pred
[FinRing.IntegralDomain.finUnitRingType; FinRing.UnitRing.eqType;
 Equality.sort; pred_of_argType] : FinRing.IntegralDomain.type >-> simpl_pred
[FinRing.IntegralDomain.finUnitRingType; FinRing.UnitRing.eqType;
 Equality.sort; pred_of_argType; pred_of_simpl] : FinRing.IntegralDomain.type >-> pred
[FinRing.IntegralDomain.finUnitRingType; FinRing.UnitRing.sort] : FinRing.IntegralDomain.type >-> Sortclass
[FinRing.IntegralDomain.finUnitRingType; FinRing.UnitRing.eqType;
 Equality.sort; pred_of_argType; pred_of_simpl; fun_of_pred] : FinRing.IntegralDomain.type >-> Funclass
Ambiguous paths:
[FinRing.IntegralDomain.comUnitRingType; GRing.ComUnitRing.unitRingType] : FinRing.IntegralDomain.type >-> GRing.UnitRing.type
[FinRing.IntegralDomain.comUnitRingType; GRing.ComUnitRing.comRingType] : FinRing.IntegralDomain.type >-> GRing.ComRing.type
[FinRing.IntegralDomain.comUnitRingType; GRing.ComUnitRing.ringType] : FinRing.IntegralDomain.type >-> GRing.Ring.type
[FinRing.IntegralDomain.comUnitRingType; GRing.ComUnitRing.zmodType] : FinRing.IntegralDomain.type >-> GRing.Zmodule.type
[FinRing.IntegralDomain.comUnitRingType; GRing.ComUnitRing.choiceType] : FinRing.IntegralDomain.type >-> Choice.type
[FinRing.IntegralDomain.comUnitRingType; GRing.ComUnitRing.eqType] : FinRing.IntegralDomain.type >-> Equality.type
[FinRing.IntegralDomain.comUnitRingType; GRing.ComUnitRing.eqType;
 Equality.sort] : FinRing.IntegralDomain.type >-> predArgType
[FinRing.IntegralDomain.comUnitRingType; GRing.ComUnitRing.eqType;
 Equality.sort; pred_of_argType; sort_of_simpl_pred] : FinRing.IntegralDomain.type >-> pred_sort
[FinRing.IntegralDomain.comUnitRingType; GRing.ComUnitRing.eqType;
 Equality.sort; pred_of_argType; collective_pred_of_simpl] : FinRing.IntegralDomain.type >-> collective_pred
[FinRing.IntegralDomain.comUnitRingType; GRing.ComUnitRing.eqType;
 Equality.sort; pred_of_argType; applicative_pred_of_simpl] : FinRing.IntegralDomain.type >-> applicative_pred
[FinRing.IntegralDomain.comUnitRingType; GRing.ComUnitRing.eqType;
 Equality.sort; pred_of_argType] : FinRing.IntegralDomain.type >-> simpl_pred
[FinRing.IntegralDomain.comUnitRingType; GRing.ComUnitRing.eqType;
 Equality.sort; pred_of_argType; pred_of_simpl] : FinRing.IntegralDomain.type >-> pred
[FinRing.IntegralDomain.comUnitRingType; GRing.ComUnitRing.sort] : FinRing.IntegralDomain.type >-> Sortclass
[FinRing.IntegralDomain.comUnitRingType; GRing.ComUnitRing.eqType;
 Equality.sort; pred_of_argType; pred_of_simpl; fun_of_pred] : FinRing.IntegralDomain.type >-> Funclass
Ambiguous paths:
[FinRing.IntegralDomain.finComUnitRingType;
 FinRing.ComUnitRing.finUnitRingType] : FinRing.IntegralDomain.type >-> FinRing.UnitRing.type
[FinRing.IntegralDomain.finComUnitRingType;
 FinRing.ComUnitRing.finComRingType] : FinRing.IntegralDomain.type >-> FinRing.ComRing.type
[FinRing.IntegralDomain.finComUnitRingType; FinRing.ComUnitRing.finRingType] : FinRing.IntegralDomain.type >-> FinRing.Ring.type
[FinRing.IntegralDomain.finComUnitRingType; FinRing.ComUnitRing.finZmodType] : FinRing.IntegralDomain.type >-> FinRing.Zmodule.type
[FinRing.IntegralDomain.finComUnitRingType; FinRing.ComUnitRing.finZmodType;
 FinRing.Zmodule.finGroupType] : FinRing.IntegralDomain.type >-> FinGroup.type
[FinRing.IntegralDomain.finComUnitRingType; FinRing.ComUnitRing.finZmodType;
 FinRing.Zmodule.baseFinGroupType; FinGroup.mixin] : FinRing.IntegralDomain.type >-> FinGroup.mixin_of
[FinRing.IntegralDomain.finComUnitRingType; FinRing.ComUnitRing.finZmodType;
 FinRing.Zmodule.baseFinGroupType] : FinRing.IntegralDomain.type >-> FinGroup.base_type
[FinRing.IntegralDomain.finComUnitRingType;
 FinRing.ComUnitRing.comUnitRingType] : FinRing.IntegralDomain.type >-> GRing.ComUnitRing.type
[FinRing.IntegralDomain.finComUnitRingType; FinRing.ComUnitRing.unitRingType] : FinRing.IntegralDomain.type >-> GRing.UnitRing.type
[FinRing.IntegralDomain.finComUnitRingType; FinRing.ComUnitRing.comRingType] : FinRing.IntegralDomain.type >-> GRing.ComRing.type
[FinRing.IntegralDomain.finComUnitRingType; FinRing.ComUnitRing.ringType] : FinRing.IntegralDomain.type >-> GRing.Ring.type
[FinRing.IntegralDomain.finComUnitRingType; FinRing.ComUnitRing.zmodType] : FinRing.IntegralDomain.type >-> GRing.Zmodule.type
[FinRing.IntegralDomain.finComUnitRingType; FinRing.ComUnitRing.finType] : FinRing.IntegralDomain.type >-> Finite.type
[FinRing.IntegralDomain.finComUnitRingType; FinRing.ComUnitRing.countType] : FinRing.IntegralDomain.type >-> Countable.type
[FinRing.IntegralDomain.finComUnitRingType; FinRing.ComUnitRing.choiceType] : FinRing.IntegralDomain.type >-> Choice.type
[FinRing.IntegralDomain.finComUnitRingType; FinRing.ComUnitRing.eqType] : FinRing.IntegralDomain.type >-> Equality.type
[FinRing.IntegralDomain.finComUnitRingType; FinRing.ComUnitRing.eqType;
 Equality.sort] : FinRing.IntegralDomain.type >-> predArgType
[FinRing.IntegralDomain.finComUnitRingType; FinRing.ComUnitRing.eqType;
 Equality.sort; pred_of_argType; sort_of_simpl_pred] : FinRing.IntegralDomain.type >-> pred_sort
[FinRing.IntegralDomain.finComUnitRingType; FinRing.ComUnitRing.eqType;
 Equality.sort; pred_of_argType; collective_pred_of_simpl] : FinRing.IntegralDomain.type >-> collective_pred
[FinRing.IntegralDomain.finComUnitRingType; FinRiWarning: Ignoring canonical projection to GRing.Zmodule.sort by FinGroup.sort in FinRing.IntegralDomain.join_baseFinGroupType: redundant with FinRing.Zmodule.join_baseFinGroupType
ng.ComUnitRing.eqType;
 Equality.sort; pred_of_argType; applicative_pred_of_simpl] : FinRing.IntegralDomain.type >-> applicative_pred
[FinRing.IntegralDomain.finComUnitRingType; FinRing.ComUnitRing.eqType;
 Equality.sort; pred_of_argType] : FinRing.IntegralDomain.type >-> simpl_pred
[FinRing.IntegralDomain.finComUnitRingType; FinRing.ComUnitRing.eqType;
 Equality.sort; pred_of_argType; pred_of_simpl] : FinRing.IntegralDomain.type >-> pred
[FinRing.IntegralDomain.finComUnitRingType; FinRing.ComUnitRing.sort] : FinRing.IntegralDomain.type >-> Sortclass
[FinRing.IntegralDomain.finComUnitRingType; FinRing.ComUnitRing.eqType;
 Equality.sort; pred_of_argType; pred_of_simpl; fun_of_pred] : FinRing.IntegralDomain.type >-> Funclass
Ambiguous paths:
[FinRing.IntegralDomain.idomainType; GRing.IntegralDomain.comUnitRingType] : FinRing.IntegralDomain.type >-> GRing.ComUnitRing.type
[FinRing.IntegralDomain.idomainType; GRing.IntegralDomain.unitRingType] : FinRing.IntegralDomain.type >-> GRing.UnitRing.type
[FinRing.IntegralDomain.idomainType; GRing.IntegralDomain.comRingType] : FinRing.IntegralDomain.type >-> GRing.ComRing.type
[FinRing.IntegralDomain.idomainType; GRing.IntegralDomain.ringType] : FinRing.IntegralDomain.type >-> GRing.Ring.type
[FinRing.IntegralDomain.idomainType; GRing.IntegralDomain.zmodType] : FinRing.IntegralDomain.type >-> GRing.Zmodule.type
[FinRing.IntegralDomain.idomainType; GRing.IntegralDomain.choiceType] : FinRing.IntegralDomain.type >-> Choice.type
[FinRing.IntegralDomain.idomainType; GRing.IntegralDomain.eqType] : FinRing.IntegralDomain.type >-> Equality.type
[FinRing.IntegralDomain.idomainType; GRing.IntegralDomain.eqType;
 Equality.sort] : FinRing.IntegralDomain.type >-> predArgType
[FinRing.IntegralDomain.idomainType; GRing.IntegralDomain.eqType;
 Equality.sort; pred_of_argType; sort_of_simpl_pred] : FinRing.IntegralDomain.type >-> pred_sort
[FinRing.IntegralDomain.idomainType; GRing.IntegralDomain.eqType;
 Equality.sort; pred_of_argType; collective_pred_of_simpl] : FinRing.IntegralDomain.type >-> collective_pred
[FinRing.IntegralDomain.idomainType; GRing.IntegralDomain.eqType;
 Equality.sort; pred_of_argType; applicative_pred_of_simpl] : FinRing.IntegralDomain.type >-> applicative_pred
[FinRing.IntegralDomain.idomainType; GRing.IntegralDomain.eqType;
 Equality.sort; pred_of_argType] : FinRing.IntegralDomain.type >-> simpl_pred
[FinRing.IntegralDomain.idomainType; GRing.IntegralDomain.eqType;
 Equality.sort; pred_of_argType; pred_of_simpl] : FinRing.IntegralDomain.type >-> pred
[FinRing.IntegralDomain.idomainType; GRing.IntegralDomain.sort] : FinRing.IntegralDomain.type >-> Sortclass
[FinRing.IntegralDomain.idomainType; GRing.IntegralDomain.eqType;
 Equality.sort; pred_of_argType; pred_of_simpl; fun_of_pred] : FinRing.IntegralDomain.type >-> Funclass
Ambiguous paths:
[FinRing.Field.base2; FinRing.IntegralDomain.base; GRing.IntegralDomain.mixin] : FinRing.Field.class_of >-> GRing.IntegralDomain.axiom
[FinRing.Field.base2; FinRing.IntegralDomain.base] : FinRing.Field.class_of >-> GRing.IntegralDomain.class_of
[FinRing.Field.base2; FinRing.IntegralDomain.base; GRing.IntegralDomain.base] : FinRing.Field.class_of >-> GRing.ComUnitRing.class_of
[FinRing.Field.base2; FinRing.IntegralDomain.base; GRing.IntegralDomain.base;
 GRing.ComUnitRing.mixin] : FinRing.Field.class_of >-> GRing.UnitRing.mixin_of
[FinRing.Field.base2; FinRing.IntegralDomain.base; GRing.IntegralDomain.base;
 GRing.ComUnitRing.base2] : FinRing.Field.class_of >-> GRing.UnitRing.class_of
[FinRing.Field.base2; FinRing.IntegralDomain.base; GRing.IntegralDomain.base;
 GRing.ComUnitRing.base; GRing.ComRing.mixin] : FinRing.Field.class_of >-> commutative
[FinRing.Field.base2; FinRing.IntegralDomain.base; GRing.IntegralDomain.base;
 GRing.ComUnitRing.base] : FinRing.Field.class_of >-> GRing.ComRing.class_of
[FinRing.Field.base2; FinRing.IntegralDomain.base; GRing.IntegralDomain.base;
 GRing.ComUnitRing.base; GRing.ComRing.base; GRing.Ring.mixin] : FinRing.Field.class_of >-> GRing.Ring.mixin_of
[FinRing.Field.base2; FinRing.IntegralDomain.base; GRing.IntegralDomain.base;
 GRing.ComUnitRing.base; GRing.ComRing.base] : FinRing.Field.class_of >-> GRing.Ring.class_of
[FinRing.Field.base2; FinRing.IntegralDomain.base; GRing.IntegralDomain.base;
 GRing.ComUnitRing.base; GRing.ComRing.base; GRing.Ring.base;
 GRing.Zmodule.mixin] : FinRing.Field.class_of >-> GRing.Zmodule.mixin_of
[FinRing.Field.base2; FinRing.IntegralDomain.base; GRing.IntegralDomain.base;
 GRing.ComUnitRing.base; GRing.ComRing.base; GRing.Ring.base] : FinRing.Field.class_of >-> GRing.Zmodule.class_of
[FinRing.Field.base2; FinRing.IntegralDomain.base; GRing.IntegralDomain.base;
 GRing.ComUnitRing.base; GRing.ComRing.base; GRing.Ring.base;
 GRing.Zmodule.base; Choice.base] : FinRing.Field.class_of >-> Equality.mixin_of
[FinRing.Field.base2; FinRing.IntegralDomain.base; GRing.IntegralDomain.base;
 GRing.ComUnitRing.base; GRing.ComRing.base; GRing.Ring.base;
 GRing.Zmodule.base] : FinRing.Field.class_of >-> Choice.class_of
Ambiguous paths:
[FinRing.Field.eqType; Equality.sort] : FinRing.Field.type >-> Sortclass
Ambiguous paths:
[FinRing.Field.choiceType; Choice.eqType] : FinRing.Field.type >-> Equality.type
[FinRing.Field.choiceType; Choice.eqType; Equality.sort] : FinRing.Field.type >-> predArgType
[FinRing.Field.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 sort_of_simpl_pred] : FinRing.Field.type >-> pred_sort
[FinRing.Field.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 collective_pred_of_simpl] : FinRing.Field.type >-> collective_pred
[FinRing.Field.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 applicative_pred_of_simpl] : FinRing.Field.type >-> applicative_pred
[FinRing.Field.choiceType; Choice.eqType; Equality.sort; pred_of_argType] : FinRing.Field.type >-> simpl_pred
[FinRing.Field.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl] : FinRing.Field.type >-> pred
[FinRing.Field.choiceType; Choice.sort] : FinRing.Field.type >-> Sortclass
[FinRing.Field.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl; fun_of_pred] : FinRing.Field.type >-> Funclass
Ambiguous paths:
[FinRing.Field.countType; Countable.choiceType] : FinRing.Field.type >-> Choice.type
[FinRing.Field.countType; Countable.eqType] : FinRing.Field.type >-> Equality.type
[FinRing.Field.countType; Countable.eqType; Equality.sort] : FinRing.Field.type >-> predArgType
[FinRing.Field.countType; Countable.eqType; Equality.sort; pred_of_argType;
 sort_of_simpl_pred] : FinRing.Field.type >-> pred_sort
[FinRing.Field.countType; Countable.eqType; Equality.sort; pred_of_argType;
 collective_pred_of_simpl] : FinRing.Field.type >-> collective_pred
[FinRing.Field.countType; Countable.eqType; Equality.sort; pred_of_argType;
 applicative_pred_of_simpl] : FinRing.Field.type >-> applicative_pred
[FinRing.Field.countType; Countable.eqType; Equality.sort; pred_of_argType] : FinRing.Field.type >-> simpl_pred
[FinRing.Field.countType; Countable.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl] : FinRing.Field.type >-> pred
[FinRing.Field.countType; Countable.sort] : FinRing.Field.type >-> Sortclass
[FinRing.Field.countType; Countable.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl; fun_of_pred] : FinRing.Field.type >-> Funclass
Ambiguous paths:
[FinRing.Field.finType; Finite.countType] : FinRing.Field.type >-> Countable.type
[FinRing.Field.finType; Finite.choiceType] : FinRing.Field.type >-> Choice.type
[FinRing.Field.finType; Finite.eqType] : FinRing.Field.type >-> Equality.type
[FinRing.Field.finType; Finite.eqType; Equality.sort] : FinRing.Field.type >-> predArgType
[FinRing.Field.finType; Finite.eqType; Equality.sort; pred_of_argType;
 sort_of_simpl_pred] : FinRing.Field.type >-> pred_sort
[FinRing.Field.finType; Finite.eqType; Equality.sort; pred_of_argType;
 collective_pred_of_simpl] : FinRing.Field.type >-> collective_pred
[FinRing.Field.finType; Finite.eqType; Equality.sort; pred_of_argType;
 applicative_pred_of_simpl] : FinRing.Field.type >-> applicative_pred
[FinRing.Field.finType; Finite.eqType; Equality.sort; pred_of_argType] : FinRing.Field.type >-> simpl_pred
[FinRing.Field.finType; Finite.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl] : FinRing.Field.type >-> pred
[FinRing.Field.finType; Finite.sort] : FinRing.Field.type >-> Sortclass
[FinRing.Field.finType; Finite.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl; fun_of_pred] : FinRing.Field.type >-> Funclass
Ambiguous paths:
[FinRing.Field.zmodType; GRing.Zmodule.choiceType] : FinRing.Field.type >-> Choice.type
[FinRing.Field.zmodType; GRing.Zmodule.eqType] : FinRing.Field.type >-> Equality.type
[FinRing.Field.zmodType; GRing.Zmodule.eqType; Equality.sort] : FinRing.Field.type >-> predArgType
[FinRing.Field.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : FinRing.Field.type >-> pred_sort
[FinRing.Field.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : FinRing.Field.type >-> collective_pred
[FinRing.Field.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : FinRing.Field.type >-> applicative_pred
[FinRing.Field.zmodType; GRing.Zmodule.eqType; Equality.sort; pred_of_argType] : FinRing.Field.type >-> simpl_pred
[FinRing.Field.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : FinRing.Field.type >-> pred
[FinRing.Field.zmodType; GRing.Zmodule.sort] : FinRing.Field.type >-> Sortclass
[FinRing.Field.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : FinRing.Field.type >-> Funclass
Ambiguous paths:
[FinRing.Field.finZmodType; FinRing.Zmodule.zmodType] : FinRing.Field.type >-> GRing.Zmodule.type
[FinRing.Field.finZmodType; FinRing.Zmodule.finType] : FinRing.Field.type >-> Finite.type
[FinRing.Field.finZmodType; FinRing.Zmodule.countType] : FinRing.Field.type >-> Countable.type
[FinRing.Field.finZmodType; FinRing.Zmodule.choiceType] : FinRing.Field.type >-> Choice.type
[FinRing.Field.finZmodType; FinRing.Zmodule.eqType] : FinRing.Field.type >-> Equality.type
[FinRing.Field.finZmodType; FinRing.Zmodule.eqType; Equality.sort] : FinRing.Field.type >-> predArgType
[FinRing.Field.finZmodType; FinRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : FinRing.Field.type >-> pred_sort
[FinRing.Field.finZmodType; FinRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : FinRing.Field.type >-> collective_pred
[FinRing.Field.finZmodType; FinRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : FinRing.Field.type >-> applicative_pred
[FinRing.Field.finZmodType; FinRing.Zmodule.eqType; Equality.sort;
 pred_of_argType] : FinRing.Field.type >-> simpl_pred
[FinRing.Field.finZmodType; FinRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : FinRing.Field.type >-> pred
[FinRing.Field.finZmodType; FinRing.Zmodule.sort] : FinRing.Field.type >-> Sortclass
[FinRing.Field.finZmodType; FinRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : FinRing.Field.type >-> Funclass
Ambiguous paths:
[FinRing.Field.ringType; GRing.Ring.zmodType] : FinRing.Field.type >-> GRing.Zmodule.type
[FinRing.Field.ringType; GRing.Ring.choiceType] : FinRing.Field.type >-> Choice.type
[FinRing.Field.ringType; GRing.Ring.eqType] : FinRing.Field.type >-> Equality.type
[FinRing.Field.ringType; GRing.Ring.eqType; Equality.sort] : FinRing.Field.type >-> predArgType
[FinRing.Field.ringType; GRing.Ring.eqType; Equality.sort; pred_of_argType;
 sort_of_simpl_pred] : FinRing.Field.type >-> pred_sort
[FinRing.Field.ringType; GRing.Ring.eqType; Equality.sort; pred_of_argType;
 collective_pred_of_simpl] : FinRing.Field.type >-> collective_pred
[FinRing.Field.ringType; GRing.Ring.eqType; Equality.sort; pred_of_argType;
 applicative_pred_of_simpl] : FinRing.Field.type >-> applicative_pred
[FinRing.Field.ringType; GRing.Ring.eqType; Equality.sort; pred_of_argType] : FinRing.Field.type >-> simpl_pred
[FinRing.Field.ringType; GRing.Ring.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl] : FinRing.Field.type >-> pred
[FinRing.Field.ringType; GRing.Ring.sort] : FinRing.Field.type >-> Sortclass
[FinRing.Field.ringType; GRing.Ring.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl; fun_of_pred] : FinRing.Field.type >-> Funclass
Ambiguous paths:
[FinRing.Field.finRingType; FinRing.Ring.finZmodType] : FinRing.Field.type >-> FinRing.Zmodule.type
[FinRing.Field.finRingType; FinRing.Ring.finZmodType;
 FinRing.Zmodule.finGroupType] : FinRing.Field.type >-> FinGroup.type
[FinRing.Field.finRingType; FinRing.Ring.finZmodType;
 FinRing.Zmodule.baseFinGroupType; FinGroup.mixin] : FinRing.Field.type >-> FinGroup.mixin_of
[FinRing.Field.finRingType; FinRing.Ring.finZmodType;
 FinRing.Zmodule.baseFinGroupType] : FinRing.Field.type >-> FinGroup.base_type
[FinRing.Field.finRingType; FinRing.Ring.ringType] : FinRing.Field.type >-> GRing.Ring.type
[FinRing.Field.finRingType; FinRing.Ring.zmodType] : FinRing.Field.type >-> GRing.Zmodule.type
[FinRing.Field.finRingType; FinRing.Ring.finType] : FinRing.Field.type >-> Finite.type
[FinRing.Field.finRingType; FinRing.Ring.countType] : FinRing.Field.type >-> Countable.type
[FinRing.Field.finRingType; FinRing.Ring.choiceType] : FinRing.Field.type >-> Choice.type
[FinRing.Field.finRingType; FinRing.Ring.eqType] : FinRing.Field.type >-> Equality.type
[FinRing.Field.finRingType; FinRing.Ring.eqType; Equality.sort] : FinRing.Field.type >-> predArgType
[FinRing.Field.finRingType; FinRing.Ring.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : FinRing.Field.type >-> pred_sort
[FinRing.Field.finRingType; FinRing.Ring.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : FinRing.Field.type >-> collective_pred
[FinRing.Field.finRingType; FinRing.Ring.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : FinRing.Field.type >-> applicative_pred
[FinRing.Field.finRingType; FinRing.Ring.eqType; Equality.sort;
 pred_of_argType] : FinRing.Field.type >-> simpl_pred
[FinRing.Field.finRingType; FinRing.Ring.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : FinRing.Field.type >-> pred
[FinRing.Field.finRingType; FinRing.Ring.sort] : FinRing.Field.type >-> Sortclass
[FinRing.Field.finRingType; FinRing.Ring.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : FinRing.Field.type >-> Funclass
Ambiguous paths:
[FinRing.Field.comRingType; GRing.ComRing.ringType] : FinRing.Field.type >-> GRing.Ring.type
[FinRing.Field.comRingType; GRing.ComRing.zmodType] : FinRing.Field.type >-> GRing.Zmodule.type
[FinRing.Field.comRingType; GRing.ComRing.choiceType] : FinRing.Field.type >-> Choice.type
[FinRing.Field.comRingType; GRing.ComRing.eqType] : FinRing.Field.type >-> Equality.type
[FinRing.Field.comRingType; GRing.ComRing.eqType; Equality.sort] : FinRing.Field.type >-> predArgType
[FinRing.Field.comRingType; GRing.ComRing.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : FinRing.Field.type >-> pred_sort
[FinRing.Field.comRingType; GRing.ComRing.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : FinRing.Field.type >-> collective_pred
[FinRing.Field.comRingType; GRing.ComRing.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : FinRing.Field.type >-> applicative_pred
[FinRing.Field.comRingType; GRing.ComRing.eqType; Equality.sort;
 pred_of_argType] : FinRing.Field.type >-> simpl_pred
[FinRing.Field.comRingType; GRing.ComRing.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : FinRing.Field.type >-> pred
[FinRing.Field.comRingType; GRing.ComRing.sort] : FinRing.Field.type >-> Sortclass
[FinRing.Field.comRingType; GRing.ComRing.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : FinRing.Field.type >-> Funclass
Ambiguous paths:
[FinRing.Field.finComRingType; FinRing.ComRing.finRingType] : FinRing.Field.type >-> FinRing.Ring.type
[FinRing.Field.finComRingType; FinRing.ComRing.finZmodType] : FinRing.Field.type >-> FinRing.Zmodule.type
[FinRing.Field.finComRingType; FinRing.ComRing.finZmodType;
 FinRing.Zmodule.finGroupType] : FinRing.Field.type >-> FinGroup.type
[FinRing.Field.finComRingType; FinRing.ComRing.finZmodType;
 FinRing.Zmodule.baseFinGroupType; FinGroup.mixin] : FinRing.Field.type >-> FinGroup.mixin_of
[FinRing.Field.finComRingType; FinRing.ComRing.finZmodType;
 FinRing.Zmodule.baseFinGroupType] : FinRing.Field.type >-> FinGroup.base_type
[FinRing.Field.finComRingType; FinRing.ComRing.comRingType] : FinRing.Field.type >-> GRing.ComRing.type
[FinRing.Field.finComRingType; FinRing.ComRing.ringType] : FinRing.Field.type >-> GRing.Ring.type
[FinRing.Field.finComRingType; FinRing.ComRing.zmodType] : FinRing.Field.type >-> GRing.Zmodule.type
[FinRing.Field.finComRingType; FinRing.ComRing.finType] : FinRing.Field.type >-> Finite.type
[FinRing.Field.finComRingType; FinRing.ComRing.countType] : FinRing.Field.type >-> Countable.type
[FinRing.Field.finComRingType; FinRing.ComRing.choiceType] : FinRing.Field.type >-> Choice.type
[FinRing.Field.finComRingType; FinRing.ComRing.eqType] : FinRing.Field.type >-> Equality.type
[FinRing.Field.finComRingType; FinRing.ComRing.eqType; Equality.sort] : FinRing.Field.type >-> predArgType
[FinRing.Field.finComRingType; FinRing.ComRing.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : FinRing.Field.type >-> pred_sort
[FinRing.Field.finComRingType; FinRing.ComRing.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : FinRing.Field.type >-> collective_pred
[FinRing.Field.finComRingType; FinRing.ComRing.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : FinRing.Field.type >-> applicative_pred
[FinRing.Field.finComRingType; FinRing.ComRing.eqType; Equality.sort;
 pred_of_argType] : FinRing.Field.type >-> simpl_pred
[FinRing.Field.finComRingType; FinRing.ComRing.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : FinRing.Field.type >-> pred
[FinRing.Field.finComRingType; FinRing.ComRing.sort] : FinRing.Field.type >-> Sortclass
[FinRing.Field.finComRingType; FinRing.ComRing.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : FinRing.Field.type >-> Funclass
Ambiguous paths:
[FinRing.Field.unitRingType; GRing.UnitRing.ringType] : FinRing.Field.type >-> GRing.Ring.type
[FinRing.Field.unitRingType; GRing.UnitRing.zmodType] : FinRing.Field.type >-> GRing.Zmodule.type
[FinRing.Field.unitRingType; GRing.UnitRing.choiceType] : FinRing.Field.type >-> Choice.type
[FinRing.Field.unitRingType; GRing.UnitRing.eqType] : FinRing.Field.type >-> Equality.type
[FinRing.Field.unitRingType; GRing.UnitRing.eqType; Equality.sort] : FinRing.Field.type >-> predArgType
[FinRing.Field.unitRingType; GRing.UnitRing.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : FinRing.Field.type >-> pred_sort
[FinRing.Field.unitRingType; GRing.UnitRing.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : FinRing.Field.type >-> collective_pred
[FinRing.Field.unitRingType; GRing.UnitRing.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : FinRing.Field.type >-> applicative_pred
[FinRing.Field.unitRingType; GRing.UnitRing.eqType; Equality.sort;
 pred_of_argType] : FinRing.Field.type >-> simpl_pred
[FinRing.Field.unitRingType; GRing.UnitRing.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : FinRing.Field.type >-> pred
[FinRing.Field.unitRingType; GRing.UnitRing.sort] : FinRing.Field.type >-> Sortclass
[FinRing.Field.unitRingType; GRing.UnitRing.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : FinRing.Field.type >-> Funclass
Ambiguous paths:
[FinRing.Field.finUnitRingType; FinRing.UnitRing.finRingType] : FinRing.Field.type >-> FinRing.Ring.type
[FinRing.Field.finUnitRingType; FinRing.UnitRing.finZmodType] : FinRing.Field.type >-> FinRing.Zmodule.type
[FinRing.Field.finUnitRingType; FinRing.UnitRing.finZmodType;
 FinRing.Zmodule.finGroupType] : FinRing.Field.type >-> FinGroup.type
[FinRing.Field.finUnitRingType; FinRing.UnitRing.finZmodType;
 FinRing.Zmodule.baseFinGroupType; FinGroup.mixin] : FinRing.Field.type >-> FinGroup.mixin_of
[FinRing.Field.finUnitRingType; FinRing.UnitRing.finZmodType;
 FinRing.Zmodule.baseFinGroupType] : FinRing.Field.type >-> FinGroup.base_type
[FinRing.Field.finUnitRingType; FinRing.UnitRing.unitRingType] : FinRing.Field.type >-> GRing.UnitRing.type
[FinRing.Field.finUnitRingType; FinRing.UnitRing.ringType] : FinRing.Field.type >-> GRing.Ring.type
[FinRing.Field.finUnitRingType; FinRing.UnitRing.zmodType] : FinRing.Field.type >-> GRing.Zmodule.type
[FinRing.Field.finUnitRingType; FinRing.UnitRing.finType] : FinRing.Field.type >-> Finite.type
[FinRing.Field.finUnitRingType; FinRing.UnitRing.countType] : FinRing.Field.type >-> Countable.type
[FinRing.Field.finUnitRingType; FinRing.UnitRing.choiceType] : FinRing.Field.type >-> Choice.type
[FinRing.Field.finUnitRingType; FinRing.UnitRing.eqType] : FinRing.Field.type >-> Equality.type
[FinRing.Field.finUnitRingType; FinRing.UnitRing.eqType; Equality.sort] : FinRing.Field.type >-> predArgType
[FinRing.Field.finUnitRingType; FinRing.UnitRing.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : FinRing.Field.type >-> pred_sort
[FinRing.Field.finUnitRingType; FinRing.UnitRing.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : FinRing.Field.type >-> collective_pred
[FinRing.Field.finUnitRingType; FinRing.UnitRing.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : FinRing.Field.type >-> applicative_pred
[FinRing.Field.finUnitRingType; FinRing.UnitRing.eqType; Equality.sort;
 pred_of_argType] : FinRing.Field.type >-> simpl_pred
[FinRing.Field.finUnitRingType; FinRing.UnitRing.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : FinRing.Field.type >-> pred
[FinRing.Field.finUnitRingType; FinRing.UnitRing.sort] : FinRing.Field.type >-> Sortclass
[FinRing.Field.finUnitRingType; FinRing.UnitRing.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : FinRing.Field.type >-> Funclass
Ambiguous paths:
[FinRing.Field.comUnitRingType; GRing.ComUnitRing.unitRingType] : FinRing.Field.type >-> GRing.UnitRing.type
[FinRing.Field.comUnitRingType; GRing.ComUnitRing.comRingType] : FinRing.Field.type >-> GRing.ComRing.type
[FinRing.Field.comUnitRingType; GRing.ComUnitRing.ringType] : FinRing.Field.type >-> GRing.Ring.type
[FinRing.Field.comUnitRingType; GRing.ComUnitRing.zmodType] : FinRing.Field.type >-> GRing.Zmodule.type
[FinRing.Field.comUnitRingType; GRing.ComUnitRing.choiceType] : FinRing.Field.type >-> Choice.type
[FinRing.Field.comUnitRingType; GRing.ComUnitRing.eqType] : FinRing.Field.type >-> Equality.type
[FinRing.Field.comUnitRingType; GRing.ComUnitRing.eqType; Equality.sort] : FinRing.Field.type >-> predArgType
[FinRing.Field.comUnitRingType; GRing.ComUnitRing.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : FinRing.Field.type >-> pred_sort
[FinRing.Field.comUnitRingType; GRing.ComUnitRing.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : FinRing.Field.type >-> collective_pred
[FinRing.Field.comUnitRingType; GRing.ComUnitRing.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : FinRing.Field.type >-> applicative_pred
[FinRing.Field.comUnitRingType; GRing.ComUnitRing.eqType; Equality.sort;
 pred_of_argType] : FinRing.Field.type >-> simpl_pred
[FinRing.Field.comUnitRingType; GRing.ComUnitRing.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : FinRing.Field.type >-> pred
[FinRing.Field.comUnitRingType; GRing.ComUnitRing.sort] : FinRing.Field.type >-> Sortclass
[FinRing.Field.comUnitRingType; GRing.ComUnitRing.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : FinRing.Field.type >-> Funclass
Ambiguous paths:
[FinRing.Field.finComUnitRingType; FinRing.ComUnitRing.finUnitRingType] : FinRing.Field.type >-> FinRing.UnitRing.type
[FinRing.Field.finComUnitRingType; FinRing.ComUnitRing.finComRingType] : FinRing.Field.type >-> FinRing.ComRing.type
[FinRing.Field.finComUnitRingType; FinRing.ComUnitRing.finRingType] : FinRing.Field.type >-> FinRing.Ring.type
[FinRing.Field.finComUnitRingType; FinRing.ComUnitRing.finZmodType] : FinRing.Field.type >-> FinRing.Zmodule.type
[FinRing.Field.finComUnitRingType; FinRing.ComUnitRing.finZmodType;
 FinRing.Zmodule.finGroupType] : FinRing.Field.type >-> FinGroup.type
[FinRing.Field.finComUnitRingType; FinRing.ComUnitRing.finZmodType;
 FinRing.Zmodule.baseFinGroupType; FinGroup.mixin] : FinRing.Field.type >-> FinGroup.mixin_of
[FinRing.Field.finComUnitRingType; FinRing.ComUnitRing.finZmodType;
 FinRing.Zmodule.baseFinGroupType] : FinRing.Field.type >-> FinGroup.base_type
[FinRing.Field.finComUnitRingType; FinRing.ComUnitRing.comUnitRingType] : FinRing.Field.type >-> GRing.ComUnitRing.type
[FinRing.Field.finComUnitRingType; FinRing.ComUnitRing.unitRingType] : FinRing.Field.type >-> GRing.UnitRing.type
[FinRing.Field.finComUnitRingType; FinRing.ComUnitRing.comRingType] : FinRing.Field.type >-> GRing.ComRing.type
[FinRing.Field.finComUnitRingType; FinRing.ComUnitRing.ringType] : FinRing.Field.type >-> GRing.Ring.type
[FinRing.Field.finComUnitRingType; FinRing.ComUnitRing.zmodType] : FinRing.Field.type >-> GRing.Zmodule.type
[FinRing.Field.finComUnitRingType; FinRing.ComUnitRing.finType] : FinRing.Field.type >-> Finite.type
[FinRing.Field.finComUnitRingType; FinRing.ComUnitRing.countType] : FinRing.Field.type >-> Countable.type
[FinRing.Field.finComUnitRingType; FinRing.ComUnitRing.choiceType] : FinRing.Field.type >-> Choice.type
[FinRing.Field.finComUnitRingType; FinRing.ComUnitRing.eqType] : FinRing.Field.type >-> Equality.type
[FinRing.Field.finComUnitRingType; FinRing.ComUnitRing.eqType; Equality.sort] : FinRing.Field.type >-> predArgType
[FinRing.Field.finComUnitRingType; FinRing.ComUnitRing.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : FinRing.Field.type >-> pred_sort
[FinRing.Field.finComUnitRingType; FinRing.ComUnitRing.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : FinRing.Field.type >-> collective_pred
[FinRing.Field.finComUnitRingType; FinRing.ComUnitRing.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : FinRing.Field.type >-> applicative_pred
[FinRing.Field.finComUnitRingType; FinRing.ComUnitRing.eqType; Equality.sort;
 pred_of_argType] : FinRing.Field.type >-> simpl_pred
[FinRing.Field.finComUnitRingType; FinRing.ComUnitRing.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : FinRing.Field.type >-> pred
[FinRing.Field.finComUnitRingType; FinRing.ComUnitRing.sort] : FinRing.Field.type >-> Sortclass
[FinRing.Field.finComUnitRingType; FinRing.ComUnitRing.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : FinRing.Field.type >-> Funclass
Ambiguous paths:
[FinRing.Field.idomainType; GRing.IntegralDomain.comUnitRingType] : FinRing.Field.type >-> GRing.ComUnitRing.type
[FinRing.Field.idomainType; GRing.IntegralDomain.unitRingType] : FinRing.Field.type >-> GRing.UnitRing.type
[FinRing.Field.idomainType; GRing.IntegralDomain.comRingType] : FinRing.Field.type >-> GRing.ComRing.type
[FinRing.Field.idomainType; GRing.IntegralDomain.ringType] : FinRing.Field.type >-> GRing.Ring.type
[FinRing.Field.idomainType; GRing.IntegralDomain.zmodType] : FinRing.Field.type >-> GRing.Zmodule.type
[FinRing.Field.idomainType; GRing.IntegralDomain.choiceType] : FinRing.Field.type >-> Choice.type
[FinRing.Field.idomainType; GRing.IntegralDomain.eqType] : FinRing.Field.type >-> Equality.type
[FinRing.Field.idomainType; GRing.IntegralDomain.eqType; Equality.sort] : FinRing.Field.type >-> predArgType
[FinRing.Field.idomainType; GRing.IntegralDomain.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : FinRing.Field.type >-> pred_sort
[FinRing.Field.idomainType; GRing.IntegralDomain.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : FinRing.Field.type >-> collective_pred
[FinRing.Field.idomainType; GRing.IntegralDomain.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : FinRing.Field.type >-> applicative_pred
[FinRing.Field.idomainType; GRing.IntegralDomain.eqType; Equality.sort;
 pred_of_argType] : FinRing.Field.type >-> simpl_pred
[FinRing.Field.idomainType; GRing.IntegralDomain.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : FinRing.Field.type >-> pred
[FinRing.Field.idomainType; GRing.IntegralDomain.sort] : FinRing.Field.type >-> Sortclass
[FinRing.Field.idomainType; GRing.IntegralDomain.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : FinRing.Field.type >-> Funclass
Ambiguous paths:
[FinRing.Field.finIdomainType; FinRing.IntegralDomain.finComUnitRingType] : FinRing.Field.type >-> FinRing.ComUnitRing.type
[FinRing.Field.finIdomainType; FinRing.IntegralDomain.finUnitRingType] : FinRing.Field.type >-> FinRing.UnitRing.type
[FinRing.Field.finIdomainType; FinRing.IntegralDomain.finComRingType] : FinRing.Field.type >-> FinRing.ComRing.type
[FinRing.Field.finIdomainType; FinRing.IntegralDomain.finRingType] : FinRing.Field.type >-> FinRing.Ring.type
[FinRing.Field.finIdomainType; FinRing.IntegralDomain.finZmodType] : FinRing.Field.type >-> FinRing.Zmodule.type
[FinRing.Field.finIdomainType; FinRing.IntegralDomain.finZmodType;
 FinRing.Zmodule.finGroupType] : FinRing.Field.type >-> FinGroup.type
[FinRing.Field.finIdomainType; FinRing.IntegralDomain.finZmodType;
 FinRing.Zmodule.baseFinGroupType; FinGroup.mixin] : FinRing.Field.type >-> FinGroup.mixin_of
[FinRing.Field.finIdomainType; FinRing.IntegralDomain.finZmodType;
 FinRing.Zmodule.baseFinGroupType] : FinRing.Field.type >-> FinGroup.base_type
[FinRing.Field.finIdomainType; FinRing.IntegralDomain.idomainType] : FinRing.Field.type >-> GRing.IntegralDomain.type
[FinRing.Field.finIdomainType; FinRing.IntegralDomain.comUnitRingType] : FinRing.Field.type >-> GRing.ComUnitRing.type
[FinRing.Field.finIdomainType; FinRing.IntegralDomain.unitRingType] : FinRing.Field.type >-> GRing.UnitRing.type
[FinRing.Field.finIdomainType; FinRing.IntegralDomain.comRingType] : FinRing.Field.type >-> GRing.ComRing.type
[FinRing.Field.finIdomainType; FinRing.IntegralDomain.ringType] : FinRing.Field.type >-> GRing.Ring.type
[FinRing.Field.finIdomainType; FinRing.IntegralDomain.zmodType] : FinRing.Field.type >-> GRing.Zmodule.type
[FinRing.Field.finIdomainType; FinRing.IntegralDomain.finType] : FinRing.Field.type >-> Finite.type
[FinRing.Field.finIdomainType; FinRing.IntegralDomain.countType] : FinRing.Field.type >-> Countable.type
[FinRing.Field.finIdomainType; FinRing.IntegralDomain.choiceType] : FinRing.Field.type >-> Choice.type
[FinRing.Field.finIdomainType; FinRing.IntegralDomain.eqType] : FinRing.Field.type >-> Equality.type
[FinRing.Field.finIdomainType; FinRing.IntegralDomain.eqType; Equality.sort] : FinRing.Field.type >-> predArgType
[FinRing.Field.finIdomainType; FinRing.IntegralDomain.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : FinRing.Field.type >-> pred_sort
[FinRing.Field.finIdomainType; FinRing.IntegralDomain.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : FinRing.Field.type >-> collective_pred
[FinRing.Field.finIdomainType; FinRing.IntegralDomain.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : FinRing.Field.type >-> applicative_pred
[FinRing.Field.finIdomainType; FinRing.IntegralDomain.eqType; Equality.sort;
 pred_of_argType] : FinRing.Field.type >-> simpl_pred
[FinRing.Field.finIdomainType; FinRing.IntegralDomain.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : FinRing.Field.type >-> pred
[FinRing.Field.finIdomainType; FinRing.IntegralDomain.sort] : FinRing.Field.type >-> Sortclass
[FinRing.Field.finIdomainType; FinRing.IntegralDomain.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : FinRing.Field.type >-> Funclass
Ambiguous paths:
[FinRing.Field.fieldType; GRing.Field.idomainType] : FinRing.Field.type >-> GRing.IntegralDomain.type
[FinRing.Field.fieldType; GRing.Field.comUnitRingType] : FinRing.Field.type >-> GRing.ComUnitRing.type
[FinRing.Field.fieldType; GRing.Field.unitRingType] : FinRing.Field.type >-> GRing.UnitRing.type
[FinRing.Field.fieldType; GRing.Field.comRingType] : FinRing.Field.type >-> GRing.ComRing.type
[FinRing.Field.fieldType; GRing.Field.ringType] : FinRing.Field.type >-> GRing.Ring.type
[FinRing.Field.fieldType; GRing.Field.zmodType] : FinRing.Field.type >-> GRing.Zmodule.type
[FinRing.Field.fieldType; GRing.Field.choiceType] : FinRing.Field.type >-> Choice.type
[FinRing.Field.fieldType; GRing.Field.eqType] : FinRing.Field.type >-> Equality.type
[FinRing.Field.fieldTWarning: Ignoring canonical projection to GRing.Zmodule.sort by FinGroup.sort in FinRing.Field.join_baseFinGroupType: redundant with FinRing.Zmodule.join_baseFinGroupType
ype; GRing.Field.eqType; Equality.sort] : FinRing.Field.type >-> predArgType
[FinRing.Field.fieldType; GRing.Field.eqType; Equality.sort; pred_of_argType;
 sort_of_simpl_pred] : FinRing.Field.type >-> pred_sort
[FinRing.Field.fieldType; GRing.Field.eqType; Equality.sort; pred_of_argType;
 collective_pred_of_simpl] : FinRing.Field.type >-> collective_pred
[FinRing.Field.fieldType; GRing.Field.eqType; Equality.sort; pred_of_argType;
 applicative_pred_of_simpl] : FinRing.Field.type >-> applicative_pred
[FinRing.Field.fieldType; GRing.Field.eqType; Equality.sort; pred_of_argType] : FinRing.Field.type >-> simpl_pred
[FinRing.Field.fieldType; GRing.Field.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl] : FinRing.Field.type >-> pred
[FinRing.Field.fieldType; GRing.Field.sort] : FinRing.Field.type >-> Sortclass
[FinRing.Field.fieldType; GRing.Field.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl; fun_of_pred] : FinRing.Field.type >-> Funclass
Ambiguous paths:
[FinRing.DecField.type; GRing.DecidableField.fieldType] : FinRing.Field.type >-> GRing.Field.type
[FinRing.DecField.type; GRing.DecidableField.idomainType] : FinRing.Field.type >-> GRing.IntegralDomain.type
[FinRing.DecField.type; GRing.DecidableField.comUnitRingType] : FinRing.Field.type >-> GRing.ComUnitRing.type
[FinRing.DecField.type; GRing.DecidableField.unitRingType] : FinRing.Field.type >-> GRing.UnitRing.type
[FinRing.DecField.type; GRing.DecidableField.comRingType] : FinRing.Field.type >-> GRing.ComRing.type
[FinRing.DecField.type; GRing.DecidableField.ringType] : FinRing.Field.type >-> GRing.Ring.type
[FinRing.DecField.type; GRing.DecidableField.zmodType] : FinRing.Field.type >-> GRing.Zmodule.type
[FinRing.DecField.type; GRing.DecidableField.choiceType] : FinRing.Field.type >-> Choice.type
[FinRing.DecField.type; GRing.DecidableField.eqType] : FinRing.Field.type >-> Equality.type
[FinRing.DecField.type; GRing.DecidableField.eqType; Equality.sort] : FinRing.Field.type >-> predArgType
[FinRing.DecField.type; GRing.DecidableField.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : FinRing.Field.type >-> pred_sort
[FinRing.DecField.type; GRing.DecidableField.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : FinRing.Field.type >-> collective_pred
[FinRing.DecField.type; GRing.DecidableField.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : FinRing.Field.type >-> applicative_pred
[FinRing.DecField.type; GRing.DecidableField.eqType; Equality.sort;
 pred_of_argType] : FinRing.Field.type >-> simpl_pred
[FinRing.DecField.type; GRing.DecidableField.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : FinRing.Field.type >-> pred
[FinRing.DecField.type; GRing.DecidableField.sort] : FinRing.Field.type >-> Sortclass
[FinRing.DecField.type; GRing.DecidableField.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : FinRing.Field.type >-> Funclass
Ambiguous paths:
[FinRing.Lmodule.base2; FinRing.Zmodule.base; GRing.Zmodule.mixin] : FinRing.Lmodule.class_of >-> GRing.Zmodule.mixin_of
[FinRing.Lmodule.base2; FinRing.Zmodule.base] : FinRing.Lmodule.class_of >-> GRing.Zmodule.class_of
[FinRing.Lmodule.base2; FinRing.Zmodule.base; GRing.Zmodule.base; Choice.base] : FinRing.Lmodule.class_of >-> Equality.mixin_of
[FinRing.Lmodule.base2; FinRing.Zmodule.base; GRing.Zmodule.base] : FinRing.Lmodule.class_of >-> Choice.class_of
Ambiguous paths:
[FinRing.Lmodule.eqType; Equality.sort] : FinRing.Lmodule.type >-> Sortclass
Ambiguous paths:
[FinRing.Lmodule.choiceType; Choice.eqType] : FinRing.Lmodule.type >-> Equality.type
[FinRing.Lmodule.choiceType; Choice.eqType; Equality.sort] : FinRing.Lmodule.type >-> predArgType
[FinRing.Lmodule.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 sort_of_simpl_pred] : FinRing.Lmodule.type >-> pred_sort
[FinRing.Lmodule.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 collective_pred_of_simpl] : FinRing.Lmodule.type >-> collective_pred
[FinRing.Lmodule.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 applicative_pred_of_simpl] : FinRing.Lmodule.type >-> applicative_pred
[FinRing.Lmodule.choiceType; Choice.eqType; Equality.sort; pred_of_argType] : FinRing.Lmodule.type >-> simpl_pred
[FinRing.Lmodule.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl] : FinRing.Lmodule.type >-> pred
[FinRing.Lmodule.choiceType; Choice.sort] : FinRing.Lmodule.type >-> Sortclass
[FinRing.Lmodule.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl; fun_of_pred] : FinRing.Lmodule.type >-> Funclass
Ambiguous paths:
[FinRing.Lmodule.countType; Countable.choiceType] : FinRing.Lmodule.type >-> Choice.type
[FinRing.Lmodule.countType; Countable.eqType] : FinRing.Lmodule.type >-> Equality.type
[FinRing.Lmodule.countType; Countable.eqType; Equality.sort] : FinRing.Lmodule.type >-> predArgType
[FinRing.Lmodule.countType; Countable.eqType; Equality.sort; pred_of_argType;
 sort_of_simpl_pred] : FinRing.Lmodule.type >-> pred_sort
[FinRing.Lmodule.countType; Countable.eqType; Equality.sort; pred_of_argType;
 collective_pred_of_simpl] : FinRing.Lmodule.type >-> collective_pred
[FinRing.Lmodule.countType; Countable.eqType; Equality.sort; pred_of_argType;
 applicative_pred_of_simpl] : FinRing.Lmodule.type >-> applicative_pred
[FinRing.Lmodule.countType; Countable.eqType; Equality.sort; pred_of_argType] : FinRing.Lmodule.type >-> simpl_pred
[FinRing.Lmodule.countType; Countable.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl] : FinRing.Lmodule.type >-> pred
[FinRing.Lmodule.countType; Countable.sort] : FinRing.Lmodule.type >-> Sortclass
[FinRing.Lmodule.countType; Countable.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl; fun_of_pred] : FinRing.Lmodule.type >-> Funclass
Ambiguous paths:
[FinRing.Lmodule.finType; Finite.countType] : FinRing.Lmodule.type >-> Countable.type
[FinRing.Lmodule.finType; Finite.choiceType] : FinRing.Lmodule.type >-> Choice.type
[FinRing.Lmodule.finType; Finite.eqType] : FinRing.Lmodule.type >-> Equality.type
[FinRing.Lmodule.finType; Finite.eqType; Equality.sort] : FinRing.Lmodule.type >-> predArgType
[FinRing.Lmodule.finType; Finite.eqType; Equality.sort; pred_of_argType;
 sort_of_simpl_pred] : FinRing.Lmodule.type >-> pred_sort
[FinRing.Lmodule.finType; Finite.eqType; Equality.sort; pred_of_argType;
 collective_pred_of_simpl] : FinRing.Lmodule.type >-> collective_pred
[FinRing.Lmodule.finType; Finite.eqType; Equality.sort; pred_of_argType;
 applicative_pred_of_simpl] : FinRing.Lmodule.type >-> applicative_pred
[FinRing.Lmodule.finType; Finite.eqType; Equality.sort; pred_of_argType] : FinRing.Lmodule.type >-> simpl_pred
[FinRing.Lmodule.finType; Finite.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl] : FinRing.Lmodule.type >-> pred
[FinRing.Lmodule.finType; Finite.sort] : FinRing.Lmodule.type >-> Sortclass
[FinRing.Lmodule.finType; Finite.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl; fun_of_pred] : FinRing.Lmodule.type >-> Funclass
Ambiguous paths:
[FinRing.Lmodule.zmodType; GRing.Zmodule.choiceType] : FinRing.Lmodule.type >-> Choice.type
[FinRing.Lmodule.zmodType; GRing.Zmodule.eqType] : FinRing.Lmodule.type >-> Equality.type
[FinRing.Lmodule.zmodType; GRing.Zmodule.eqType; Equality.sort] : FinRing.Lmodule.type >-> predArgType
[FinRing.Lmodule.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : FinRing.Lmodule.type >-> pred_sort
[FinRing.Lmodule.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : FinRing.Lmodule.type >-> collective_pred
[FinRing.Lmodule.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : FinRing.Lmodule.type >-> applicative_pred
[FinRing.Lmodule.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType] : FinRing.Lmodule.type >-> simpl_pred
[FinRing.Lmodule.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : FinRing.Lmodule.type >-> pred
[FinRing.Lmodule.zmodType; GRing.Zmodule.sort] : FinRing.Lmodule.type >-> Sortclass
[FinRing.Lmodule.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_predWarning: Ignoring canonical projection to GRing.Zmodule.sort by FinGroup.sort in FinRing.Lmodule.join_baseFinGroupType: redundant with FinRing.Zmodule.join_baseFinGroupType
] : FinRing.Lmodule.type >-> Funclass
Ambiguous paths:
[FinRing.Lmodule.finZmodType; FinRing.Zmodule.zmodType] : FinRing.Lmodule.type >-> GRing.Zmodule.type
[FinRing.Lmodule.finZmodType; FinRing.Zmodule.finType] : FinRing.Lmodule.type >-> Finite.type
[FinRing.Lmodule.finZmodType; FinRing.Zmodule.countType] : FinRing.Lmodule.type >-> Countable.type
[FinRing.Lmodule.finZmodType; FinRing.Zmodule.choiceType] : FinRing.Lmodule.type >-> Choice.type
[FinRing.Lmodule.finZmodType; FinRing.Zmodule.eqType] : FinRing.Lmodule.type >-> Equality.type
[FinRing.Lmodule.finZmodType; FinRing.Zmodule.eqType; Equality.sort] : FinRing.Lmodule.type >-> predArgType
[FinRing.Lmodule.finZmodType; FinRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : FinRing.Lmodule.type >-> pred_sort
[FinRing.Lmodule.finZmodType; FinRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : FinRing.Lmodule.type >-> collective_pred
[FinRing.Lmodule.finZmodType; FinRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : FinRing.Lmodule.type >-> applicative_pred
[FinRing.Lmodule.finZmodType; FinRing.Zmodule.eqType; Equality.sort;
 pred_of_argType] : FinRing.Lmodule.type >-> simpl_pred
[FinRing.Lmodule.finZmodType; FinRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : FinRing.Lmodule.type >-> pred
[FinRing.Lmodule.finZmodType; FinRing.Zmodule.sort] : FinRing.Lmodule.type >-> Sortclass
[FinRing.Lmodule.finZmodType; FinRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : FinRing.Lmodule.type >-> Funclass
Ambiguous paths:
[FinRing.Lmodule.lmodType; GRing.Lmodule.zmodType] : FinRing.Lmodule.type >-> GRing.Zmodule.type
[FinRing.Lmodule.lmodType; GRing.Lmodule.choiceType] : FinRing.Lmodule.type >-> Choice.type
[FinRing.Lmodule.lmodType; GRing.Lmodule.eqType] : FinRing.Lmodule.type >-> Equality.type
[FinRing.Lmodule.lmodType; GRing.Lmodule.eqType; Equality.sort] : FinRing.Lmodule.type >-> predArgType
[FinRing.Lmodule.lmodType; GRing.Lmodule.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : FinRing.Lmodule.type >-> pred_sort
[FinRing.Lmodule.lmodType; GRing.Lmodule.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : FinRing.Lmodule.type >-> collective_pred
[FinRing.Lmodule.lmodType; GRing.Lmodule.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : FinRing.Lmodule.type >-> applicative_pred
[FinRing.Lmodule.lmodType; GRing.Lmodule.eqType; Equality.sort;
 pred_of_argType] : FinRing.Lmodule.type >-> simpl_pred
[FinRing.Lmodule.lmodType; GRing.Lmodule.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : FinRing.Lmodule.type >-> pred
[FinRing.Lmodule.lmodType; GRing.Lmodule.sort] : FinRing.Lmodule.type >-> Sortclass
[FinRing.Lmodule.lmodType; GRing.Lmodule.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : FinRing.Lmodule.type >-> Funclass
Ambiguous paths:
[FinRing.Lalgebra.base2; FinRing.Ring.base; GRing.Ring.mixin] : FinRing.Lalgebra.class_of >-> GRing.Ring.mixin_of
[FinRing.Lalgebra.base2; FinRing.Ring.base] : FinRing.Lalgebra.class_of >-> GRing.Ring.class_of
[FinRing.Lalgebra.base2; FinRing.Ring.base; GRing.Ring.base;
 GRing.Zmodule.mixin] : FinRing.Lalgebra.class_of >-> GRing.Zmodule.mixin_of
[FinRing.Lalgebra.base2; FinRing.Ring.base; GRing.Ring.base] : FinRing.Lalgebra.class_of >-> GRing.Zmodule.class_of
[FinRing.Lalgebra.base2; FinRing.Ring.base; GRing.Ring.base;
 GRing.Zmodule.base; Choice.base] : FinRing.Lalgebra.class_of >-> Equality.mixin_of
[FinRing.Lalgebra.base2; FinRing.Ring.base; GRing.Ring.base;
 GRing.Zmodule.base] : FinRing.Lalgebra.class_of >-> Choice.class_of
Ambiguous paths:
[FinRing.Lalgebra.base3; FinRing.Lmodule.base2] : FinRing.Lalgebra.class_of >-> FinRing.Zmodule.class_of
[FinRing.Lalgebra.base3; FinRing.Lmodule.base; GRing.Lmodule.mixin] : FinRing.Lalgebra.class_of >-> GRing.Lmodule.mixin_of
[FinRing.Lalgebra.base3; FinRing.Lmodule.base] : FinRing.Lalgebra.class_of >-> GRing.Lmodule.class_of
[FinRing.Lalgebra.base3; FinRing.Lmodule.base; GRing.Lmodule.base;
 GRing.Zmodule.mixin] : FinRing.Lalgebra.class_of >-> GRing.Zmodule.mixin_of
[FinRing.Lalgebra.base3; FinRing.Lmodule.base; GRing.Lmodule.base] : FinRing.Lalgebra.class_of >-> GRing.Zmodule.class_of
[FinRing.Lalgebra.base3; FinRing.Lmodule.base2; FinRing.Zmodule.mixin] : FinRing.Lalgebra.class_of >-> Finite.mixin_of
[FinRing.Lalgebra.base3; FinRing.Lmodule.base2; FinRing.Zmodule.mixin;
 Finite.mixin_base] : FinRing.Lalgebra.class_of >-> Countable.mixin_of
[FinRing.Lalgebra.base3; FinRing.Lmodule.base; GRing.Lmodule.base;
 GRing.Zmodule.base; Choice.base] : FinRing.Lalgebra.class_of >-> Equality.mixin_of
[FinRing.Lalgebra.base3; FinRing.Lmodule.base; GRing.Lmodule.base;
 GRing.Zmodule.base] : FinRing.Lalgebra.class_of >-> Choice.class_of
Ambiguous paths:
[FinRing.Lalgebra.eqType; Equality.sort] : FinRing.Lalgebra.type >-> Sortclass
Ambiguous paths:
[FinRing.Lalgebra.choiceType; Choice.eqType] : FinRing.Lalgebra.type >-> Equality.type
[FinRing.Lalgebra.choiceType; Choice.eqType; Equality.sort] : FinRing.Lalgebra.type >-> predArgType
[FinRing.Lalgebra.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 sort_of_simpl_pred] : FinRing.Lalgebra.type >-> pred_sort
[FinRing.Lalgebra.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 collective_pred_of_simpl] : FinRing.Lalgebra.type >-> collective_pred
[FinRing.Lalgebra.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 applicative_pred_of_simpl] : FinRing.Lalgebra.type >-> applicative_pred
[FinRing.Lalgebra.choiceType; Choice.eqType; Equality.sort; pred_of_argType] : FinRing.Lalgebra.type >-> simpl_pred
[FinRing.Lalgebra.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl] : FinRing.Lalgebra.type >-> pred
[FinRing.Lalgebra.choiceType; Choice.sort] : FinRing.Lalgebra.type >-> Sortclass
[FinRing.Lalgebra.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl; fun_of_pred] : FinRing.Lalgebra.type >-> Funclass
Ambiguous paths:
[FinRing.Lalgebra.countType; Countable.choiceType] : FinRing.Lalgebra.type >-> Choice.type
[FinRing.Lalgebra.countType; Countable.eqType] : FinRing.Lalgebra.type >-> Equality.type
[FinRing.Lalgebra.countType; Countable.eqType; Equality.sort] : FinRing.Lalgebra.type >-> predArgType
[FinRing.Lalgebra.countType; Countable.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : FinRing.Lalgebra.type >-> pred_sort
[FinRing.Lalgebra.countType; Countable.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : FinRing.Lalgebra.type >-> collective_pred
[FinRing.Lalgebra.countType; Countable.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : FinRing.Lalgebra.type >-> applicative_pred
[FinRing.Lalgebra.countType; Countable.eqType; Equality.sort; pred_of_argType] : FinRing.Lalgebra.type >-> simpl_pred
[FinRing.Lalgebra.countType; Countable.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : FinRing.Lalgebra.type >-> pred
[FinRing.Lalgebra.countType; Countable.sort] : FinRing.Lalgebra.type >-> Sortclass
[FinRing.Lalgebra.countType; Countable.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : FinRing.Lalgebra.type >-> Funclass
Ambiguous paths:
[FinRing.Lalgebra.finType; Finite.countType] : FinRing.Lalgebra.type >-> Countable.type
[FinRing.Lalgebra.finType; Finite.choiceType] : FinRing.Lalgebra.type >-> Choice.type
[FinRing.Lalgebra.finType; Finite.eqType] : FinRing.Lalgebra.type >-> Equality.type
[FinRing.Lalgebra.finType; Finite.eqType; Equality.sort] : FinRing.Lalgebra.type >-> predArgType
[FinRing.Lalgebra.finType; Finite.eqType; Equality.sort; pred_of_argType;
 sort_of_simpl_pred] : FinRing.Lalgebra.type >-> pred_sort
[FinRing.Lalgebra.finType; Finite.eqType; Equality.sort; pred_of_argType;
 collective_pred_of_simpl] : FinRing.Lalgebra.type >-> collective_pred
[FinRing.Lalgebra.finType; Finite.eqType; Equality.sort; pred_of_argType;
 applicative_pred_of_simpl] : FinRing.Lalgebra.type >-> applicative_pred
[FinRing.Lalgebra.finType; Finite.eqType; Equality.sort; pred_of_argType] : FinRing.Lalgebra.type >-> simpl_pred
[FinRing.Lalgebra.finType; Finite.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl] : FinRing.Lalgebra.type >-> pred
[FinRing.Lalgebra.finType; Finite.sort] : FinRing.Lalgebra.type >-> Sortclass
[FinRing.Lalgebra.finType; Finite.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl; fun_of_pred] : FinRing.Lalgebra.type >-> Funclass
Ambiguous paths:
[FinRing.Lalgebra.zmodType; GRing.Zmodule.choiceType] : FinRing.Lalgebra.type >-> Choice.type
[FinRing.Lalgebra.zmodType; GRing.Zmodule.eqType] : FinRing.Lalgebra.type >-> Equality.type
[FinRing.Lalgebra.zmodType; GRing.Zmodule.eqType; Equality.sort] : FinRing.Lalgebra.type >-> predArgType
[FinRing.Lalgebra.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : FinRing.Lalgebra.type >-> pred_sort
[FinRing.Lalgebra.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : FinRing.Lalgebra.type >-> collective_pred
[FinRing.Lalgebra.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : FinRing.Lalgebra.type >-> applicative_pred
[FinRing.Lalgebra.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType] : FinRing.Lalgebra.type >-> simpl_pred
[FinRing.Lalgebra.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : FinRing.Lalgebra.type >-> pred
[FinRing.Lalgebra.zmodType; GRing.Zmodule.sort] : FinRing.Lalgebra.type >-> Sortclass
[FinRing.Lalgebra.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : FinRing.Lalgebra.type >-> Funclass
Ambiguous paths:
[FinRing.Lalgebra.finZmodType; FinRing.Zmodule.zmodType] : FinRing.Lalgebra.type >-> GRing.Zmodule.type
[FinRing.Lalgebra.finZmodType; FinRing.Zmodule.finType] : FinRing.Lalgebra.type >-> Finite.type
[FinRing.Lalgebra.finZmodType; FinRing.Zmodule.countType] : FinRing.Lalgebra.type >-> Countable.type
[FinRing.Lalgebra.finZmodType; FinRing.Zmodule.choiceType] : FinRing.Lalgebra.type >-> Choice.type
[FinRing.Lalgebra.finZmodType; FinRing.Zmodule.eqType] : FinRing.Lalgebra.type >-> Equality.type
[FinRing.Lalgebra.finZmodType; FinRing.Zmodule.eqType; Equality.sort] : FinRing.Lalgebra.type >-> predArgType
[FinRing.Lalgebra.finZmodType; FinRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : FinRing.Lalgebra.type >-> pred_sort
[FinRing.Lalgebra.finZmodType; FinRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : FinRing.Lalgebra.type >-> collective_pred
[FinRing.Lalgebra.finZmodType; FinRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : FinRing.Lalgebra.type >-> applicative_pred
[FinRing.Lalgebra.finZmodType; FinRing.Zmodule.eqType; Equality.sort;
 pred_of_argType] : FinRing.Lalgebra.type >-> simpl_pred
[FinRing.Lalgebra.finZmodType; FinRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : FinRing.Lalgebra.type >-> pred
[FinRing.Lalgebra.finZmodType; FinRing.Zmodule.sort] : FinRing.Lalgebra.type >-> Sortclass
[FinRing.Lalgebra.finZmodType; FinRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : FinRing.Lalgebra.type >-> Funclass
Ambiguous paths:
[FinRing.Lalgebra.ringType; GRing.Ring.zmodType] : FinRing.Lalgebra.type >-> GRing.Zmodule.type
[FinRing.Lalgebra.ringType; GRing.Ring.choiceType] : FinRing.Lalgebra.type >-> Choice.type
[FinRing.Lalgebra.ringType; GRing.Ring.eqType] : FinRing.Lalgebra.type >-> Equality.type
[FinRing.Lalgebra.ringType; GRing.Ring.eqType; Equality.sort] : FinRing.Lalgebra.type >-> predArgType
[FinRing.Lalgebra.ringType; GRing.Ring.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : FinRing.Lalgebra.type >-> pred_sort
[FinRing.Lalgebra.ringType; GRing.Ring.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : FinRing.Lalgebra.type >-> collective_pred
[FinRing.Lalgebra.ringType; GRing.Ring.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : FinRing.Lalgebra.type >-> applicative_pred
[FinRing.Lalgebra.ringType; GRing.Ring.eqType; Equality.sort; pred_of_argType] : FinRing.Lalgebra.type >-> simpl_pred
[FinRing.Lalgebra.ringType; GRing.Ring.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : FinRing.Lalgebra.type >-> pred
[FinRing.Lalgebra.ringType; GRing.Ring.sort] : FinRing.Lalgebra.type >-> Sortclass
[FinRing.Lalgebra.ringType; GRing.Ring.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : FinRing.Lalgebra.type >-> Funclass
Ambiguous paths:
[FinRing.Lalgebra.finRingType; FinRing.Ring.finZmodType] : FinRing.Lalgebra.type >-> FinRing.Zmodule.type
[FinRing.Lalgebra.finRingType; FinRing.Ring.finZmodType;
 FinRing.Zmodule.finGroupType] : FinRing.Lalgebra.type >-> FinGroup.type
[FinRing.Lalgebra.finRingType; FinRing.Ring.finZmodType;
 FinRing.Zmodule.baseFinGroupType; FinGroup.mixin] : FinRing.Lalgebra.type >-> FinGroup.mixin_of
[FinRing.Lalgebra.finRingType; FinRing.Ring.finZmodType;
 FinRing.Zmodule.baseFinGroupType] : FinRing.Lalgebra.type >-> FinGroup.base_type
[FinRing.Lalgebra.finRingType; FinRing.Ring.ringType] : FinRing.Lalgebra.type >-> GRing.Ring.type
[FinRing.Lalgebra.finRingType; FinRing.Ring.zmodType] : FinRing.Lalgebra.type >-> GRing.Zmodule.type
[FinRing.Lalgebra.finRingType; FinRing.Ring.finType] : FinRing.Lalgebra.type >-> Finite.type
[FinRing.Lalgebra.finRingType; FinRing.Ring.countType] : FinRing.Lalgebra.type >-> Countable.type
[FinRing.Lalgebra.finRingType; FinRing.Ring.choiceType] : FinRing.Lalgebra.type >-> Choice.type
[FinRing.Lalgebra.finRingType; FinRing.Ring.eqType] : FinRing.Lalgebra.type >-> Equality.type
[FinRing.Lalgebra.finRingType; FinRing.Ring.eqType; Equality.sort] : FinRing.Lalgebra.type >-> predArgType
[FinRing.Lalgebra.finRingType; FinRing.Ring.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : FinRing.Lalgebra.type >-> pred_sort
[FinRing.Lalgebra.finRingType; FinRing.Ring.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : FinRing.Lalgebra.type >-> collective_pred
[FinRing.Lalgebra.finRingType; FinRing.Ring.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : FinRing.Lalgebra.type >-> applicative_pred
[FinRing.Lalgebra.finRingType; FinRing.Ring.eqType; Equality.sort;
 pred_of_argType] : FinRing.Lalgebra.type >-> simpl_pred
[FinRing.Lalgebra.finRingType; FinRing.Ring.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : FinRing.Lalgebra.type >-> pred
[FinRing.Lalgebra.finRingType; FinRing.Ring.sort] : FinRing.Lalgebra.type >-> Sortclass
[FinRing.Lalgebra.finRingType; FinRing.Ring.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : FinRing.Lalgebra.type >-> Funclass
Ambiguous paths:
[FinRing.Lalgebra.lmodType; GRing.Lmodule.zmodType] : FinRing.Lalgebra.type >-> GRing.Zmodule.type
[FinRing.Lalgebra.lmodType; GRing.Lmodule.choiceType] : FinRing.Lalgebra.type >-> Choice.type
[FinRing.Lalgebra.lmodType; GRing.Lmodule.eqType] : FinRing.Lalgebra.type >-> Equality.type
[FinRing.Lalgebra.lmodType; GRing.Lmodule.eqType; Equality.sort] : FinRing.Lalgebra.type >-> predArgType
[FinRing.Lalgebra.lmodType; GRing.Lmodule.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : FinRing.Lalgebra.type >-> pred_sort
[FinRing.Lalgebra.lmodType; GRing.Lmodule.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : FinRing.Lalgebra.type >-> collective_pred
[FinRing.Lalgebra.lmodType; GRing.Lmodule.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : FinRing.Lalgebra.type >-> applicative_pred
[FinRing.Lalgebra.lmodType; GRing.Lmodule.eqType; Equality.sort;
 pred_of_argType] : FinRing.Lalgebra.type >-> simpl_pred
[FinRing.Lalgebra.lmodType; GRing.Lmodule.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : FinRing.Lalgebra.type >-> pred
[FinRing.Lalgebra.lmodType; GRing.Lmodule.sort] : FinRing.Lalgebra.type >-> Sortclass
[FinRing.Lalgebra.lmodType; GRing.Lmodule.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : FinRing.Lalgebra.type >-> Funclass
Ambiguous paths:
[FinRing.Lalgebra.finLmodType; FinRing.Lmodule.finZmodType] : FinRing.Lalgebra.type >-> FinRing.Zmodule.type
[FinRing.Lalgebra.finLmodType; FinRing.Lmodule.finZmodType;
 FinRing.ZmodulWarning: Ignoring canonical projection to GRing.Zmodule.sort by FinGroup.sort in FinRing.Lalgebra.join_baseFinGroupType: redundant with FinRing.Zmodule.join_baseFinGroupType
e.finGroupType] : FinRing.Lalgebra.type >-> FinGroup.type
[FinRing.Lalgebra.finLmodType; FinRing.Lmodule.finZmodType;
 FinRing.Zmodule.baseFinGroupType; FinGroup.mixin] : FinRing.Lalgebra.type >-> FinGroup.mixin_of
[FinRing.Lalgebra.finLmodType; FinRing.Lmodule.finZmodType;
 FinRing.Zmodule.baseFinGroupType] : FinRing.Lalgebra.type >-> FinGroup.base_type
[FinRing.Lalgebra.finLmodType; FinRing.Lmodule.lmodType] : FinRing.Lalgebra.type >-> GRing.Lmodule.type
[FinRing.Lalgebra.finLmodType; FinRing.Lmodule.zmodType] : FinRing.Lalgebra.type >-> GRing.Zmodule.type
[FinRing.Lalgebra.finLmodType; FinRing.Lmodule.finType] : FinRing.Lalgebra.type >-> Finite.type
[FinRing.Lalgebra.finLmodType; FinRing.Lmodule.countType] : FinRing.Lalgebra.type >-> Countable.type
[FinRing.Lalgebra.finLmodType; FinRing.Lmodule.choiceType] : FinRing.Lalgebra.type >-> Choice.type
[FinRing.Lalgebra.finLmodType; FinRing.Lmodule.eqType] : FinRing.Lalgebra.type >-> Equality.type
[FinRing.Lalgebra.finLmodType; FinRing.Lmodule.eqType; Equality.sort] : FinRing.Lalgebra.type >-> predArgType
[FinRing.Lalgebra.finLmodType; FinRing.Lmodule.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : FinRing.Lalgebra.type >-> pred_sort
[FinRing.Lalgebra.finLmodType; FinRing.Lmodule.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : FinRing.Lalgebra.type >-> collective_pred
[FinRing.Lalgebra.finLmodType; FinRing.Lmodule.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : FinRing.Lalgebra.type >-> applicative_pred
[FinRing.Lalgebra.finLmodType; FinRing.Lmodule.eqType; Equality.sort;
 pred_of_argType] : FinRing.Lalgebra.type >-> simpl_pred
[FinRing.Lalgebra.finLmodType; FinRing.Lmodule.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : FinRing.Lalgebra.type >-> pred
[FinRing.Lalgebra.finLmodType; FinRing.Lmodule.sort] : FinRing.Lalgebra.type >-> Sortclass
[FinRing.Lalgebra.finLmodType; FinRing.Lmodule.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : FinRing.Lalgebra.type >-> Funclass
Ambiguous paths:
[FinRing.Lalgebra.lalgType; GRing.Lalgebra.lmodType] : FinRing.Lalgebra.type >-> GRing.Lmodule.type
[FinRing.Lalgebra.lalgType; GRing.Lalgebra.ringType] : FinRing.Lalgebra.type >-> GRing.Ring.type
[FinRing.Lalgebra.lalgType; GRing.Lalgebra.zmodType] : FinRing.Lalgebra.type >-> GRing.Zmodule.type
[FinRing.Lalgebra.lalgType; GRing.Lalgebra.choiceType] : FinRing.Lalgebra.type >-> Choice.type
[FinRing.Lalgebra.lalgType; GRing.Lalgebra.eqType] : FinRing.Lalgebra.type >-> Equality.type
[FinRing.Lalgebra.lalgType; GRing.Lalgebra.eqType; Equality.sort] : FinRing.Lalgebra.type >-> predArgType
[FinRing.Lalgebra.lalgType; GRing.Lalgebra.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : FinRing.Lalgebra.type >-> pred_sort
[FinRing.Lalgebra.lalgType; GRing.Lalgebra.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : FinRing.Lalgebra.type >-> collective_pred
[FinRing.Lalgebra.lalgType; GRing.Lalgebra.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : FinRing.Lalgebra.type >-> applicative_pred
[FinRing.Lalgebra.lalgType; GRing.Lalgebra.eqType; Equality.sort;
 pred_of_argType] : FinRing.Lalgebra.type >-> simpl_pred
[FinRing.Lalgebra.lalgType; GRing.Lalgebra.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : FinRing.Lalgebra.type >-> pred
[FinRing.Lalgebra.lalgType; GRing.Lalgebra.sort] : FinRing.Lalgebra.type >-> Sortclass
[FinRing.Lalgebra.lalgType; GRing.Lalgebra.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : FinRing.Lalgebra.type >-> Funclass
Ambiguous paths:
[FinRing.Algebra.base2; FinRing.Lalgebra.base] : FinRing.Algebra.class_of >-> GRing.Lalgebra.class_of
[FinRing.Algebra.base2; FinRing.Lalgebra.base; GRing.Lalgebra.base2;
 GRing.Lmodule.mixin] : FinRing.Algebra.class_of >-> GRing.Lmodule.mixin_of
[FinRing.Algebra.base2; FinRing.Lalgebra.base; GRing.Lalgebra.base2] : FinRing.Algebra.class_of >-> GRing.Lmodule.class_of
[FinRing.Algebra.base2; FinRing.Lalgebra.base; GRing.Lalgebra.base;
 GRing.Ring.mixin] : FinRing.Algebra.class_of >-> GRing.Ring.mixin_of
[FinRing.Algebra.base2; FinRing.Lalgebra.base; GRing.Lalgebra.base] : FinRing.Algebra.class_of >-> GRing.Ring.class_of
[FinRing.Algebra.base2; FinRing.Lalgebra.base; GRing.Lalgebra.base;
 GRing.Ring.base; GRing.Zmodule.mixin] : FinRing.Algebra.class_of >-> GRing.Zmodule.mixin_of
[FinRing.Algebra.base2; FinRing.Lalgebra.base; GRing.Lalgebra.base;
 GRing.Ring.base] : FinRing.Algebra.class_of >-> GRing.Zmodule.class_of
[FinRing.Algebra.base2; FinRing.Lalgebra.base; GRing.Lalgebra.base;
 GRing.Ring.base; GRing.Zmodule.base; Choice.base] : FinRing.Algebra.class_of >-> Equality.mixin_of
[FinRing.Algebra.base2; FinRing.Lalgebra.base; GRing.Lalgebra.base;
 GRing.Ring.base; GRing.Zmodule.base] : FinRing.Algebra.class_of >-> Choice.class_of
Ambiguous paths:
[FinRing.Algebra.eqType; Equality.sort] : FinRing.Algebra.type >-> Sortclass
Ambiguous paths:
[FinRing.Algebra.choiceType; Choice.eqType] : FinRing.Algebra.type >-> Equality.type
[FinRing.Algebra.choiceType; Choice.eqType; Equality.sort] : FinRing.Algebra.type >-> predArgType
[FinRing.Algebra.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 sort_of_simpl_pred] : FinRing.Algebra.type >-> pred_sort
[FinRing.Algebra.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 collective_pred_of_simpl] : FinRing.Algebra.type >-> collective_pred
[FinRing.Algebra.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 applicative_pred_of_simpl] : FinRing.Algebra.type >-> applicative_pred
[FinRing.Algebra.choiceType; Choice.eqType; Equality.sort; pred_of_argType] : FinRing.Algebra.type >-> simpl_pred
[FinRing.Algebra.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl] : FinRing.Algebra.type >-> pred
[FinRing.Algebra.choiceType; Choice.sort] : FinRing.Algebra.type >-> Sortclass
[FinRing.Algebra.choiceType; Choice.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl; fun_of_pred] : FinRing.Algebra.type >-> Funclass
Ambiguous paths:
[FinRing.Algebra.countType; Countable.choiceType] : FinRing.Algebra.type >-> Choice.type
[FinRing.Algebra.countType; Countable.eqType] : FinRing.Algebra.type >-> Equality.type
[FinRing.Algebra.countType; Countable.eqType; Equality.sort] : FinRing.Algebra.type >-> predArgType
[FinRing.Algebra.countType; Countable.eqType; Equality.sort; pred_of_argType;
 sort_of_simpl_pred] : FinRing.Algebra.type >-> pred_sort
[FinRing.Algebra.countType; Countable.eqType; Equality.sort; pred_of_argType;
 collective_pred_of_simpl] : FinRing.Algebra.type >-> collective_pred
[FinRing.Algebra.countType; Countable.eqType; Equality.sort; pred_of_argType;
 applicative_pred_of_simpl] : FinRing.Algebra.type >-> applicative_pred
[FinRing.Algebra.countType; Countable.eqType; Equality.sort; pred_of_argType] : FinRing.Algebra.type >-> simpl_pred
[FinRing.Algebra.countType; Countable.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl] : FinRing.Algebra.type >-> pred
[FinRing.Algebra.countType; Countable.sort] : FinRing.Algebra.type >-> Sortclass
[FinRing.Algebra.countType; Countable.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl; fun_of_pred] : FinRing.Algebra.type >-> Funclass
Ambiguous paths:
[FinRing.Algebra.finType; Finite.countType] : FinRing.Algebra.type >-> Countable.type
[FinRing.Algebra.finType; Finite.choiceType] : FinRing.Algebra.type >-> Choice.type
[FinRing.Algebra.finType; Finite.eqType] : FinRing.Algebra.type >-> Equality.type
[FinRing.Algebra.finType; Finite.eqType; Equality.sort] : FinRing.Algebra.type >-> predArgType
[FinRing.Algebra.finType; Finite.eqType; Equality.sort; pred_of_argType;
 sort_of_simpl_pred] : FinRing.Algebra.type >-> pred_sort
[FinRing.Algebra.finType; Finite.eqType; Equality.sort; pred_of_argType;
 collective_pred_of_simpl] : FinRing.Algebra.type >-> collective_pred
[FinRing.Algebra.finType; Finite.eqType; Equality.sort; pred_of_argType;
 applicative_pred_of_simpl] : FinRing.Algebra.type >-> applicative_pred
[FinRing.Algebra.finType; Finite.eqType; Equality.sort; pred_of_argType] : FinRing.Algebra.type >-> simpl_pred
[FinRing.Algebra.finType; Finite.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl] : FinRing.Algebra.type >-> pred
[FinRing.Algebra.finType; Finite.sort] : FinRing.Algebra.type >-> Sortclass
[FinRing.Algebra.finType; Finite.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl; fun_of_pred] : FinRing.Algebra.type >-> Funclass
Ambiguous paths:
[FinRing.Algebra.zmodType; GRing.Zmodule.choiceType] : FinRing.Algebra.type >-> Choice.type
[FinRing.Algebra.zmodType; GRing.Zmodule.eqType] : FinRing.Algebra.type >-> Equality.type
[FinRing.Algebra.zmodType; GRing.Zmodule.eqType; Equality.sort] : FinRing.Algebra.type >-> predArgType
[FinRing.Algebra.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : FinRing.Algebra.type >-> pred_sort
[FinRing.Algebra.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : FinRing.Algebra.type >-> collective_pred
[FinRing.Algebra.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : FinRing.Algebra.type >-> applicative_pred
[FinRing.Algebra.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType] : FinRing.Algebra.type >-> simpl_pred
[FinRing.Algebra.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : FinRing.Algebra.type >-> pred
[FinRing.Algebra.zmodType; GRing.Zmodule.sort] : FinRing.Algebra.type >-> Sortclass
[FinRing.Algebra.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : FinRing.Algebra.type >-> Funclass
Ambiguous paths:
[FinRing.Algebra.finZmodType; FinRing.Zmodule.zmodType] : FinRing.Algebra.type >-> GRing.Zmodule.type
[FinRing.Algebra.finZmodType; FinRing.Zmodule.finType] : FinRing.Algebra.type >-> Finite.type
[FinRing.Algebra.finZmodType; FinRing.Zmodule.countType] : FinRing.Algebra.type >-> Countable.type
[FinRing.Algebra.finZmodType; FinRing.Zmodule.choiceType] : FinRing.Algebra.type >-> Choice.type
[FinRing.Algebra.finZmodType; FinRing.Zmodule.eqType] : FinRing.Algebra.type >-> Equality.type
[FinRing.Algebra.finZmodType; FinRing.Zmodule.eqType; Equality.sort] : FinRing.Algebra.type >-> predArgType
[FinRing.Algebra.finZmodType; FinRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : FinRing.Algebra.type >-> pred_sort
[FinRing.Algebra.finZmodType; FinRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : FinRing.Algebra.type >-> collective_pred
[FinRing.Algebra.finZmodType; FinRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : FinRing.Algebra.type >-> applicative_pred
[FinRing.Algebra.finZmodType; FinRing.Zmodule.eqType; Equality.sort;
 pred_of_argType] : FinRing.Algebra.type >-> simpl_pred
[FinRing.Algebra.finZmodType; FinRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : FinRing.Algebra.type >-> pred
[FinRing.Algebra.finZmodType; FinRing.Zmodule.sort] : FinRing.Algebra.type >-> Sortclass
[FinRing.Algebra.finZmodType; FinRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : FinRing.Algebra.type >-> Funclass
Ambiguous paths:
[FinRing.Algebra.ringType; GRing.Ring.zmodType] : FinRing.Algebra.type >-> GRing.Zmodule.type
[FinRing.Algebra.ringType; GRing.Ring.choiceType] : FinRing.Algebra.type >-> Choice.type
[FinRing.Algebra.ringType; GRing.Ring.eqType] : FinRing.Algebra.type >-> Equality.type
[FinRing.Algebra.ringType; GRing.Ring.eqType; Equality.sort] : FinRing.Algebra.type >-> predArgType
[FinRing.Algebra.ringType; GRing.Ring.eqType; Equality.sort; pred_of_argType;
 sort_of_simpl_pred] : FinRing.Algebra.type >-> pred_sort
[FinRing.Algebra.ringType; GRing.Ring.eqType; Equality.sort; pred_of_argType;
 collective_pred_of_simpl] : FinRing.Algebra.type >-> collective_pred
[FinRing.Algebra.ringType; GRing.Ring.eqType; Equality.sort; pred_of_argType;
 applicative_pred_of_simpl] : FinRing.Algebra.type >-> applicative_pred
[FinRing.Algebra.ringType; GRing.Ring.eqType; Equality.sort; pred_of_argType] : FinRing.Algebra.type >-> simpl_pred
[FinRing.Algebra.ringType; GRing.Ring.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl] : FinRing.Algebra.type >-> pred
[FinRing.Algebra.ringType; GRing.Ring.sort] : FinRing.Algebra.type >-> Sortclass
[FinRing.Algebra.ringType; GRing.Ring.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl; fun_of_pred] : FinRing.Algebra.type >-> Funclass
Ambiguous paths:
[FinRing.Algebra.finRingType; FinRing.Ring.finZmodType] : FinRing.Algebra.type >-> FinRing.Zmodule.type
[FinRing.Algebra.finRingType; FinRing.Ring.finZmodType;
 FinRing.Zmodule.finGroupType] : FinRing.Algebra.type >-> FinGroup.type
[FinRing.Algebra.finRingType; FinRing.Ring.finZmodType;
 FinRing.Zmodule.baseFinGroupType; FinGroup.mixin] : FinRing.Algebra.type >-> FinGroup.mixin_of
[FinRing.Algebra.finRingType; FinRing.Ring.finZmodType;
 FinRing.Zmodule.baseFinGroupType] : FinRing.Algebra.type >-> FinGroup.base_type
[FinRing.Algebra.finRingType; FinRing.Ring.ringType] : FinRing.Algebra.type >-> GRing.Ring.type
[FinRing.Algebra.finRingType; FinRing.Ring.zmodType] : FinRing.Algebra.type >-> GRing.Zmodule.type
[FinRing.Algebra.finRingType; FinRing.Ring.finType] : FinRing.Algebra.type >-> Finite.type
[FinRing.Algebra.finRingType; FinRing.Ring.countType] : FinRing.Algebra.type >-> Countable.type
[FinRing.Algebra.finRingType; FinRing.Ring.choiceType] : FinRing.Algebra.type >-> Choice.type
[FinRing.Algebra.finRingType; FinRing.Ring.eqType] : FinRing.Algebra.type >-> Equality.type
[FinRing.Algebra.finRingType; FinRing.Ring.eqType; Equality.sort] : FinRing.Algebra.type >-> predArgType
[FinRing.Algebra.finRingType; FinRing.Ring.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : FinRing.Algebra.type >-> pred_sort
[FinRing.Algebra.finRingType; FinRing.Ring.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : FinRing.Algebra.type >-> collective_pred
[FinRing.Algebra.finRingType; FinRing.Ring.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : FinRing.Algebra.type >-> applicative_pred
[FinRing.Algebra.finRingType; FinRing.Ring.eqType; Equality.sort;
 pred_of_argType] : FinRing.Algebra.type >-> simpl_pred
[FinRing.Algebra.finRingType; FinRing.Ring.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : FinRing.Algebra.type >-> pred
[FinRing.Algebra.finRingType; FinRing.Ring.sort] : FinRing.Algebra.type >-> Sortclass
[FinRing.Algebra.finRingType; FinRing.Ring.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : FinRing.Algebra.type >-> Funclass
Ambiguous paths:
[FinRing.Algebra.lmodType; GRing.Lmodule.zmodType] : FinRing.Algebra.type >-> GRing.Zmodule.type
[FinRing.Algebra.lmodType; GRing.Lmodule.choiceType] : FinRing.Algebra.type >-> Choice.type
[FinRing.Algebra.lmodType; GRing.Lmodule.eqType] : FinRing.Algebra.type >-> Equality.type
[FinRing.Algebra.lmodType; GRing.Lmodule.eqType; Equality.sort] : FinRing.Algebra.type >-> predArgType
[FinRing.Algebra.lmodType; GRing.Lmodule.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : FinRing.Algebra.type >-> pred_sort
[FinRing.Algebra.lmodType; GRing.Lmodule.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : FinRing.Algebra.type >-> collective_pred
[FinRing.Algebra.lmodType; GRing.Lmodule.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : FinRing.Algebra.type >-> applicative_pred
[FinRing.Algebra.lmodType; GRing.Lmodule.eqType; Equality.sort;
 pred_of_argType] : FinRing.Algebra.type >-> simpl_pred
[FinRing.Algebra.lmodType; GRing.Lmodule.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : FinRing.Algebra.type >-> pred
[FinRing.Algebra.lmodType; GRing.Lmodule.sort] : FinRing.Algebra.type >-> Sortclass
[FinRing.Algebra.lmodType; GRing.Lmodule.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : FinRing.Algebra.type >-> Funclass
Ambiguous paths:
[FinRing.Algebra.finLmodType; FinRing.Lmodule.finZmodType] : FinRing.Algebra.type >-> FinRing.Zmodule.type
[FinRing.Algebra.finLmodType; FinRing.Lmodule.finZmodType;
 FinRing.Zmodule.finGroupType] : FinRing.Algebra.type >-> FinGroup.type
[FinRing.Algebra.finLmodType; FinRing.Lmodule.finZmodType;
 FinRing.Zmodule.baseFinGroupType; FinGroup.mixin] : FinRing.Algebra.type >-> FinGroup.mixin_of
[FinRing.Algebra.finLmodType; FinRing.Lmodule.finZmodType;
 FinRing.Zmodule.baseFinGroupType] : FinRing.Algebra.type >-> FinGroup.base_type
[FinRing.Algebra.finLmodType; FinRing.Lmodule.lmodType] : FinRing.Algebra.type >-> GRing.Lmodule.type
[FinRing.Algebra.finLmodType; FinRing.Lmodule.zmodType] : FinRing.Algebra.type >-> GRing.Zmodule.type
[FinRing.Algebra.finLmodType; FinRing.Lmodule.finType] : FinRing.Algebra.type >-> Finite.type
[FinRing.Algebra.finLmodType; FinRing.Lmodule.countType] : FinRing.Algebra.type >-> Countable.type
[FinRing.Algebra.finLmodType; FinRing.Lmodule.choiceType] : FinRing.Algebra.type >-> Choice.type
[FinRing.Algebra.finLmodType; FinRing.Lmodule.eqType] : FinRing.Algebra.type >-> Equality.type
[FinRing.Algebra.finLmodType; FinRing.Lmodule.eqType; Equality.sort] : FinRing.Algebra.type >-> predArgType
[FinRing.Algebra.finLmodType; FinRing.Lmodule.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : FinRing.Algebra.type >-> pred_sort
[FinRing.Algebra.finLmodType; FinRing.Lmodule.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : FinRing.Algebra.type >-> collective_pred
[FinRing.Algebra.finLmodType; FinRing.Lmodule.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : FinRing.Algebra.type >-> applicative_pred
[FinRing.Algebra.finLmodType; FinRing.Lmodule.eqType; Equality.sort;
 pred_of_argType] : FinRing.Algebra.type >-> simpl_pred
[FinRing.Algebra.finLmodType; FinRing.Lmodule.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : FinRing.Algebra.type >-> pred
[FinRing.Algebra.finLmodType; FinRing.Lmodule.sort] : FinRing.Algebra.type >-> Sortclass
[FinRing.Algebra.finLmodType; FinRing.Lmodule.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : FinRing.Algebra.type >-> Funclass
Ambiguous paths:
[FinRing.Algebra.lalgType; GRing.Lalgebra.lmodType] : FinRing.Algebra.type >-> GRing.Lmodule.type
[FinRing.Algebra.lalgType; GRing.Lalgebra.ringType] : FinRing.Algebra.type >-> GRing.Ring.type
[FinRing.Algebra.lalgType; GRing.Lalgebra.zmodType] : FinRing.Algebra.type >-> GRing.Zmodule.type
[FinRing.Algebra.lalgType; GRing.Lalgebra.choiceType] : FinRing.Algebra.type >-> Choice.type
[FinRing.Algebra.lalgType; GRing.Lalgebra.eqType] : FinRing.Algebra.type >-> Equality.type
[FinRing.Algebra.lalgType; GRing.Lalgebra.eqType; Equality.sort] : FinRing.Algebra.type >-> predArgType
[FinRing.Algebra.lalgType; GRing.Lalgebra.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : FinRing.Algebra.type >-> pred_sort
[FinRing.Algebra.lalgType; GRing.Lalgebra.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : FinRing.Algebra.type >-> collective_pred
[FinRing.Algebra.lalgType; GRing.Lalgebra.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : FinRing.Algebra.type >-> applicative_pred
[FinRing.Algebra.lalgType; GRing.Lalgebra.eqType; Equality.sort;
 pred_of_argType] : FinRing.Algebra.type >-> simpl_pred
[FinRing.Algebra.lalgType; GRing.Lalgebra.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : FinRing.Algebra.type >-> pred
[FinRing.Algebra.lalgType; GRing.Lalgebra.sort] : FinRing.Algebra.type >-> Sortclass
[FinRing.Algebra.lalgType; GRing.Lalgebra.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : FinRing.Algebra.type >-> Funclass
Ambiguous paths:
[FinRing.Algebra.finLalgType; FinRing.Lalgebra.finLmodType] : FinRing.Algebra.type >-> FinRing.Lmodule.type
[FinRing.Algebra.finLalgType; FinRing.Lalgebra.finRingType] : FinRing.Algebra.type >-> FinRing.Ring.type
[FinRing.Algebra.finLalgType; FinRing.Lalgebra.finZmodType] : FinRing.Algebra.type >-> FinRing.Zmodule.type
[FinRing.Algebra.finLalgType; FinRing.Lalgebra.finZmodType;
 FinRing.Zmodule.finGroupType] : FinRing.Algebra.type >-> FinGroup.type
[FinRing.Algebra.finLalgType; FinRing.Lalgebra.finZmodType;
 FinRing.Zmodule.baseFinGroupType; FinGroup.mixin] : FinRing.Algebra.type >-> FinGroup.mixin_of
[FinRing.Algebra.finLalgType; FinRing.Lalgebra.finZmodType;
 FinRing.Zmodule.baseFinGroupType] : FinRing.Algebra.type >Warning: Ignoring canonical projection to GRing.Zmodule.sort by FinGroup.sort in FinRing.Algebra.join_baseFinGroupType: redundant with FinRing.Zmodule.join_baseFinGroupType
-> FinGroup.base_type
[FinRing.Algebra.finLalgType; FinRing.Lalgebra.lalgType] : FinRing.Algebra.type >-> GRing.Lalgebra.type
[FinRing.Algebra.finLalgType; FinRing.Lalgebra.lmodType] : FinRing.Algebra.type >-> GRing.Lmodule.type
[FinRing.Algebra.finLalgType; FinRing.Lalgebra.ringType] : FinRing.Algebra.type >-> GRing.Ring.type
[FinRing.Algebra.finLalgType; FinRing.Lalgebra.zmodType] : FinRing.Algebra.type >-> GRing.Zmodule.type
[FinRing.Algebra.finLalgType; FinRing.Lalgebra.finType] : FinRing.Algebra.type >-> Finite.type
[FinRing.Algebra.finLalgType; FinRing.Lalgebra.countType] : FinRing.Algebra.type >-> Countable.type
[FinRing.Algebra.finLalgType; FinRing.Lalgebra.choiceType] : FinRing.Algebra.type >-> Choice.type
[FinRing.Algebra.finLalgType; FinRing.Lalgebra.eqType] : FinRing.Algebra.type >-> Equality.type
[FinRing.Algebra.finLalgType; FinRing.Lalgebra.eqType; Equality.sort] : FinRing.Algebra.type >-> predArgType
[FinRing.Algebra.finLalgType; FinRing.Lalgebra.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : FinRing.Algebra.type >-> pred_sort
[FinRing.Algebra.finLalgType; FinRing.Lalgebra.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : FinRing.Algebra.type >-> collective_pred
[FinRing.Algebra.finLalgType; FinRing.Lalgebra.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : FinRing.Algebra.type >-> applicative_pred
[FinRing.Algebra.finLalgType; FinRing.Lalgebra.eqType; Equality.sort;
 pred_of_argType] : FinRing.Algebra.type >-> simpl_pred
[FinRing.Algebra.finLalgType; FinRing.Lalgebra.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : FinRing.Algebra.type >-> pred
[FinRing.Algebra.finLalgType; FinRing.Lalgebra.sort] : FinRing.Algebra.type >-> Sortclass
[FinRing.Algebra.finLalgType; FinRing.Lalgebra.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : FinRing.Algebra.type >-> Funclass
Ambiguous paths:
[FinRing.Algebra.algType; GRing.Algebra.lalgType] : FinRing.Algebra.type >-> GRing.Lalgebra.type
[FinRing.Algebra.algType; GRing.Algebra.lmodType] : FinRing.Algebra.type >-> GRing.Lmodule.type
[FinRing.Algebra.algType; GRing.Algebra.ringType] : FinRing.Algebra.type >-> GRing.Ring.type
[FinRing.Algebra.algType; GRing.Algebra.zmodType] : FinRing.Algebra.type >-> GRing.Zmodule.type
[FinRing.Algebra.algType; GRing.Algebra.choiceType] : FinRing.Algebra.type >-> Choice.type
[FinRing.Algebra.algType; GRing.Algebra.eqType] : FinRing.Algebra.type >-> Equality.type
[FinRing.Algebra.algType; GRing.Algebra.eqType; Equality.sort] : FinRing.Algebra.type >-> predArgType
[FinRing.Algebra.algType; GRing.Algebra.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : FinRing.Algebra.type >-> pred_sort
[FinRing.Algebra.algType; GRing.Algebra.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : FinRing.Algebra.type >-> collective_pred
[FinRing.Algebra.algType; GRing.Algebra.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : FinRing.Algebra.type >-> applicative_pred
[FinRing.Algebra.algType; GRing.Algebra.eqType; Equality.sort;
 pred_of_argType] : FinRing.Algebra.type >-> simpl_pred
[FinRing.Algebra.algType; GRing.Algebra.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : FinRing.Algebra.type >-> pred
[FinRing.Algebra.algType; GRing.Algebra.sort] : FinRing.Algebra.type >-> Sortclass
[FinRing.Algebra.algType; GRing.Algebra.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : FinRing.Algebra.type >-> Funclass
Ambiguous paths:
[FinRing.UnitAlgebra.base2; FinRing.Algebra.base] : FinRing.UnitAlgebra.class_of >-> GRing.Algebra.class_of
[FinRing.UnitAlgebra.base2; FinRing.Algebra.base; GRing.Algebra.base] : FinRing.UnitAlgebra.class_of >-> GRing.Lalgebra.class_of
[FinRing.UnitAlgebra.base2; FinRing.Algebra.base; GRing.Algebra.base;
 GRing.Lalgebra.base2; GRing.Lmodule.mixin] : FinRing.UnitAlgebra.class_of >-> GRing.Lmodule.mixin_of
[FinRing.UnitAlgebra.base2; FinRing.Algebra.base; GRing.Algebra.base;
 GRing.Lalgebra.base2] : FinRing.UnitAlgebra.class_of >-> GRing.Lmodule.class_of
[FinRing.UnitAlgebra.base2; FinRing.Algebra.base; GRing.Algebra.base;
 GRing.Lalgebra.base; GRing.Ring.mixin] : FinRing.UnitAlgebra.class_of >-> GRing.Ring.mixin_of
[FinRing.UnitAlgebra.base2; FinRing.Algebra.base; GRing.Algebra.base;
 GRing.Lalgebra.base] : FinRing.UnitAlgebra.class_of >-> GRing.Ring.class_of
[FinRing.UnitAlgebra.base2; FinRing.Algebra.base; GRing.Algebra.base;
 GRing.Lalgebra.base; GRing.Ring.base; GRing.Zmodule.mixin] : FinRing.UnitAlgebra.class_of >-> GRing.Zmodule.mixin_of
[FinRing.UnitAlgebra.base2; FinRing.Algebra.base; GRing.Algebra.base;
 GRing.Lalgebra.base; GRing.Ring.base] : FinRing.UnitAlgebra.class_of >-> GRing.Zmodule.class_of
[FinRing.UnitAlgebra.base2; FinRing.Algebra.base; GRing.Algebra.base;
 GRing.Lalgebra.base; GRing.Ring.base; GRing.Zmodule.base; Choice.base] : FinRing.UnitAlgebra.class_of >-> Equality.mixin_of
[FinRing.UnitAlgebra.base2; FinRing.Algebra.base; GRing.Algebra.base;
 GRing.Lalgebra.base; GRing.Ring.base; GRing.Zmodule.base] : FinRing.UnitAlgebra.class_of >-> Choice.class_of
Ambiguous paths:
[FinRing.UnitAlgebra.base3; FinRing.UnitRing.base2] : FinRing.UnitAlgebra.class_of >-> FinRing.Ring.class_of
[FinRing.UnitAlgebra.base3; FinRing.UnitRing.base2; FinRing.Ring.base2] : FinRing.UnitAlgebra.class_of >-> FinRing.Zmodule.class_of
[FinRing.UnitAlgebra.base3; FinRing.UnitRing.base; GRing.UnitRing.mixin] : FinRing.UnitAlgebra.class_of >-> GRing.UnitRing.mixin_of
[FinRing.UnitAlgebra.base3; FinRing.UnitRing.base] : FinRing.UnitAlgebra.class_of >-> GRing.UnitRing.class_of
[FinRing.UnitAlgebra.base3; FinRing.UnitRing.base; GRing.UnitRing.base;
 GRing.Ring.mixin] : FinRing.UnitAlgebra.class_of >-> GRing.Ring.mixin_of
[FinRing.UnitAlgebra.base3; FinRing.UnitRing.base; GRing.UnitRing.base] : FinRing.UnitAlgebra.class_of >-> GRing.Ring.class_of
[FinRing.UnitAlgebra.base3; FinRing.UnitRing.base; GRing.UnitRing.base;
 GRing.Ring.base; GRing.Zmodule.mixin] : FinRing.UnitAlgebra.class_of >-> GRing.Zmodule.mixin_of
[FinRing.UnitAlgebra.base3; FinRing.UnitRing.base; GRing.UnitRing.base;
 GRing.Ring.base] : FinRing.UnitAlgebra.class_of >-> GRing.Zmodule.class_of
[FinRing.UnitAlgebra.base3; FinRing.UnitRing.base2; FinRing.Ring.base2;
 FinRing.Zmodule.mixin] : FinRing.UnitAlgebra.class_of >-> Finite.mixin_of
[FinRing.UnitAlgebra.base3; FinRing.UnitRing.base2; FinRing.Ring.base2;
 FinRing.Zmodule.mixin; Finite.mixin_base] : FinRing.UnitAlgebra.class_of >-> Countable.mixin_of
[FinRing.UnitAlgebra.base3; FinRing.UnitRing.base; GRing.UnitRing.base;
 GRing.Ring.base; GRing.Zmodule.base; Choice.base] : FinRing.UnitAlgebra.class_of >-> Equality.mixin_of
[FinRing.UnitAlgebra.base3; FinRing.UnitRing.base; GRing.UnitRing.base;
 GRing.Ring.base; GRing.Zmodule.base] : FinRing.UnitAlgebra.class_of >-> Choice.class_of
Ambiguous paths:
[FinRing.UnitAlgebra.eqType; Equality.sort] : FinRing.UnitAlgebra.type >-> Sortclass
Ambiguous paths:
[FinRing.UnitAlgebra.choiceType; Choice.eqType] : FinRing.UnitAlgebra.type >-> Equality.type
[FinRing.UnitAlgebra.choiceType; Choice.eqType; Equality.sort] : FinRing.UnitAlgebra.type >-> predArgType
[FinRing.UnitAlgebra.choiceType; Choice.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : FinRing.UnitAlgebra.type >-> pred_sort
[FinRing.UnitAlgebra.choiceType; Choice.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : FinRing.UnitAlgebra.type >-> collective_pred
[FinRing.UnitAlgebra.choiceType; Choice.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : FinRing.UnitAlgebra.type >-> applicative_pred
[FinRing.UnitAlgebra.choiceType; Choice.eqType; Equality.sort;
 pred_of_argType] : FinRing.UnitAlgebra.type >-> simpl_pred
[FinRing.UnitAlgebra.choiceType; Choice.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : FinRing.UnitAlgebra.type >-> pred
[FinRing.UnitAlgebra.choiceType; Choice.sort] : FinRing.UnitAlgebra.type >-> Sortclass
[FinRing.UnitAlgebra.choiceType; Choice.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : FinRing.UnitAlgebra.type >-> Funclass
Ambiguous paths:
[FinRing.UnitAlgebra.countType; Countable.choiceType] : FinRing.UnitAlgebra.type >-> Choice.type
[FinRing.UnitAlgebra.countType; Countable.eqType] : FinRing.UnitAlgebra.type >-> Equality.type
[FinRing.UnitAlgebra.countType; Countable.eqType; Equality.sort] : FinRing.UnitAlgebra.type >-> predArgType
[FinRing.UnitAlgebra.countType; Countable.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : FinRing.UnitAlgebra.type >-> pred_sort
[FinRing.UnitAlgebra.countType; Countable.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : FinRing.UnitAlgebra.type >-> collective_pred
[FinRing.UnitAlgebra.countType; Countable.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : FinRing.UnitAlgebra.type >-> applicative_pred
[FinRing.UnitAlgebra.countType; Countable.eqType; Equality.sort;
 pred_of_argType] : FinRing.UnitAlgebra.type >-> simpl_pred
[FinRing.UnitAlgebra.countType; Countable.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : FinRing.UnitAlgebra.type >-> pred
[FinRing.UnitAlgebra.countType; Countable.sort] : FinRing.UnitAlgebra.type >-> Sortclass
[FinRing.UnitAlgebra.countType; Countable.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : FinRing.UnitAlgebra.type >-> Funclass
Ambiguous paths:
[FinRing.UnitAlgebra.finType; Finite.countType] : FinRing.UnitAlgebra.type >-> Countable.type
[FinRing.UnitAlgebra.finType; Finite.choiceType] : FinRing.UnitAlgebra.type >-> Choice.type
[FinRing.UnitAlgebra.finType; Finite.eqType] : FinRing.UnitAlgebra.type >-> Equality.type
[FinRing.UnitAlgebra.finType; Finite.eqType; Equality.sort] : FinRing.UnitAlgebra.type >-> predArgType
[FinRing.UnitAlgebra.finType; Finite.eqType; Equality.sort; pred_of_argType;
 sort_of_simpl_pred] : FinRing.UnitAlgebra.type >-> pred_sort
[FinRing.UnitAlgebra.finType; Finite.eqType; Equality.sort; pred_of_argType;
 collective_pred_of_simpl] : FinRing.UnitAlgebra.type >-> collective_pred
[FinRing.UnitAlgebra.finType; Finite.eqType; Equality.sort; pred_of_argType;
 applicative_pred_of_simpl] : FinRing.UnitAlgebra.type >-> applicative_pred
[FinRing.UnitAlgebra.finType; Finite.eqType; Equality.sort; pred_of_argType] : FinRing.UnitAlgebra.type >-> simpl_pred
[FinRing.UnitAlgebra.finType; Finite.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl] : FinRing.UnitAlgebra.type >-> pred
[FinRing.UnitAlgebra.finType; Finite.sort] : FinRing.UnitAlgebra.type >-> Sortclass
[FinRing.UnitAlgebra.finType; Finite.eqType; Equality.sort; pred_of_argType;
 pred_of_simpl; fun_of_pred] : FinRing.UnitAlgebra.type >-> Funclass
Ambiguous paths:
[FinRing.UnitAlgebra.zmodType; GRing.Zmodule.choiceType] : FinRing.UnitAlgebra.type >-> Choice.type
[FinRing.UnitAlgebra.zmodType; GRing.Zmodule.eqType] : FinRing.UnitAlgebra.type >-> Equality.type
[FinRing.UnitAlgebra.zmodType; GRing.Zmodule.eqType; Equality.sort] : FinRing.UnitAlgebra.type >-> predArgType
[FinRing.UnitAlgebra.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : FinRing.UnitAlgebra.type >-> pred_sort
[FinRing.UnitAlgebra.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : FinRing.UnitAlgebra.type >-> collective_pred
[FinRing.UnitAlgebra.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : FinRing.UnitAlgebra.type >-> applicative_pred
[FinRing.UnitAlgebra.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType] : FinRing.UnitAlgebra.type >-> simpl_pred
[FinRing.UnitAlgebra.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : FinRing.UnitAlgebra.type >-> pred
[FinRing.UnitAlgebra.zmodType; GRing.Zmodule.sort] : FinRing.UnitAlgebra.type >-> Sortclass
[FinRing.UnitAlgebra.zmodType; GRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : FinRing.UnitAlgebra.type >-> Funclass
Ambiguous paths:
[FinRing.UnitAlgebra.finZmodType; FinRing.Zmodule.zmodType] : FinRing.UnitAlgebra.type >-> GRing.Zmodule.type
[FinRing.UnitAlgebra.finZmodType; FinRing.Zmodule.finType] : FinRing.UnitAlgebra.type >-> Finite.type
[FinRing.UnitAlgebra.finZmodType; FinRing.Zmodule.countType] : FinRing.UnitAlgebra.type >-> Countable.type
[FinRing.UnitAlgebra.finZmodType; FinRing.Zmodule.choiceType] : FinRing.UnitAlgebra.type >-> Choice.type
[FinRing.UnitAlgebra.finZmodType; FinRing.Zmodule.eqType] : FinRing.UnitAlgebra.type >-> Equality.type
[FinRing.UnitAlgebra.finZmodType; FinRing.Zmodule.eqType; Equality.sort] : FinRing.UnitAlgebra.type >-> predArgType
[FinRing.UnitAlgebra.finZmodType; FinRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : FinRing.UnitAlgebra.type >-> pred_sort
[FinRing.UnitAlgebra.finZmodType; FinRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : FinRing.UnitAlgebra.type >-> collective_pred
[FinRing.UnitAlgebra.finZmodType; FinRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : FinRing.UnitAlgebra.type >-> applicative_pred
[FinRing.UnitAlgebra.finZmodType; FinRing.Zmodule.eqType; Equality.sort;
 pred_of_argType] : FinRing.UnitAlgebra.type >-> simpl_pred
[FinRing.UnitAlgebra.finZmodType; FinRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : FinRing.UnitAlgebra.type >-> pred
[FinRing.UnitAlgebra.finZmodType; FinRing.Zmodule.sort] : FinRing.UnitAlgebra.type >-> Sortclass
[FinRing.UnitAlgebra.finZmodType; FinRing.Zmodule.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : FinRing.UnitAlgebra.type >-> Funclass
Ambiguous paths:
[FinRing.UnitAlgebra.ringType; GRing.Ring.zmodType] : FinRing.UnitAlgebra.type >-> GRing.Zmodule.type
[FinRing.UnitAlgebra.ringType; GRing.Ring.choiceType] : FinRing.UnitAlgebra.type >-> Choice.type
[FinRing.UnitAlgebra.ringType; GRing.Ring.eqType] : FinRing.UnitAlgebra.type >-> Equality.type
[FinRing.UnitAlgebra.ringType; GRing.Ring.eqType; Equality.sort] : FinRing.UnitAlgebra.type >-> predArgType
[FinRing.UnitAlgebra.ringType; GRing.Ring.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : FinRing.UnitAlgebra.type >-> pred_sort
[FinRing.UnitAlgebra.ringType; GRing.Ring.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : FinRing.UnitAlgebra.type >-> collective_pred
[FinRing.UnitAlgebra.ringType; GRing.Ring.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : FinRing.UnitAlgebra.type >-> applicative_pred
[FinRing.UnitAlgebra.ringType; GRing.Ring.eqType; Equality.sort;
 pred_of_argType] : FinRing.UnitAlgebra.type >-> simpl_pred
[FinRing.UnitAlgebra.ringType; GRing.Ring.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : FinRing.UnitAlgebra.type >-> pred
[FinRing.UnitAlgebra.ringType; GRing.Ring.sort] : FinRing.UnitAlgebra.type >-> Sortclass
[FinRing.UnitAlgebra.ringType; GRing.Ring.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : FinRing.UnitAlgebra.type >-> Funclass
Ambiguous paths:
[FinRing.UnitAlgebra.finRingType; FinRing.Ring.finZmodType] : FinRing.UnitAlgebra.type >-> FinRing.Zmodule.type
[FinRing.UnitAlgebra.finRingType; FinRing.Ring.finZmodType;
 FinRing.Zmodule.finGroupType] : FinRing.UnitAlgebra.type >-> FinGroup.type
[FinRing.UnitAlgebra.finRingType; FinRing.Ring.finZmodType;
 FinRing.Zmodule.baseFinGroupType; FinGroup.mixin] : FinRing.UnitAlgebra.type >-> FinGroup.mixin_of
[FinRing.UnitAlgebra.finRingType; FinRing.Ring.finZmodType;
 FinRing.Zmodule.baseFinGroupType] : FinRing.UnitAlgebra.type >-> FinGroup.base_type
[FinRing.UnitAlgebra.finRingType; FinRing.Ring.ringType] : FinRing.UnitAlgebra.type >-> GRing.Ring.type
[FinRing.UnitAlgebra.finRingType; FinRing.Ring.zmodType] : FinRing.UnitAlgebra.type >-> GRing.Zmodule.type
[FinRing.UnitAlgebra.finRingType; FinRing.Ring.finType] : FinRing.UnitAlgebra.type >-> Finite.type
[FinRing.UnitAlgebra.finRingType; FinRing.Ring.countType] : FinRing.UnitAlgebra.type >-> Countable.type
[FinRing.UnitAlgebra.finRingType; FinRing.Ring.choiceType] : FinRing.UnitAlgebra.type >-> Choice.type
[FinRing.UnitAlgebra.finRingType; FinRing.Ring.eqType] : FinRing.UnitAlgebra.type >-> Equality.type
[FinRing.UnitAlgebra.finRingType; FinRing.Ring.eqType; Equality.sort] : FinRing.UnitAlgebra.type >-> predArgType
[FinRing.UnitAlgebra.finRingType; FinRing.Ring.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : FinRing.UnitAlgebra.type >-> pred_sort
[FinRing.UnitAlgebra.finRingType; FinRing.Ring.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : FinRing.UnitAlgebra.type >-> collective_pred
[FinRing.UnitAlgebra.finRingType; FinRing.Ring.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : FinRing.UnitAlgebra.type >-> applicative_pred
[FinRing.UnitAlgebra.finRingType; FinRing.Ring.eqType; Equality.sort;
 pred_of_argType] : FinRing.UnitAlgebra.type >-> simpl_pred
[FinRing.UnitAlgebra.finRingType; FinRing.Ring.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : FinRing.UnitAlgebra.type >-> pred
[FinRing.UnitAlgebra.finRingType; FinRing.Ring.sort] : FinRing.UnitAlgebra.type >-> Sortclass
[FinRing.UnitAlgebra.finRingType; FinRing.Ring.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : FinRing.UnitAlgebra.type >-> Funclass
Ambiguous paths:
[FinRing.UnitAlgebra.unitRingType; GRing.UnitRing.ringType] : FinRing.UnitAlgebra.type >-> GRing.Ring.type
[FinRing.UnitAlgebra.unitRingType; GRing.UnitRing.zmodType] : FinRing.UnitAlgebra.type >-> GRing.Zmodule.type
[FinRing.UnitAlgebra.unitRingType; GRing.UnitRing.choiceType] : FinRing.UnitAlgebra.type >-> Choice.type
[FinRing.UnitAlgebra.unitRingType; GRing.UnitRing.eqType] : FinRing.UnitAlgebra.type >-> Equality.type
[FinRing.UnitAlgebra.unitRingType; GRing.UnitRing.eqType; Equality.sort] : FinRing.UnitAlgebra.type >-> predArgType
[FinRing.UnitAlgebra.unitRingType; GRing.UnitRing.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : FinRing.UnitAlgebra.type >-> pred_sort
[FinRing.UnitAlgebra.unitRingType; GRing.UnitRing.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : FinRing.UnitAlgebra.type >-> collective_pred
[FinRing.UnitAlgebra.unitRingType; GRing.UnitRing.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : FinRing.UnitAlgebra.type >-> applicative_pred
[FinRing.UnitAlgebra.unitRingType; GRing.UnitRing.eqType; Equality.sort;
 pred_of_argType] : FinRing.UnitAlgebra.type >-> simpl_pred
[FinRing.UnitAlgebra.unitRingType; GRing.UnitRing.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : FinRing.UnitAlgebra.type >-> pred
[FinRing.UnitAlgebra.unitRingType; GRing.UnitRing.sort] : FinRing.UnitAlgebra.type >-> Sortclass
[FinRing.UnitAlgebra.unitRingType; GRing.UnitRing.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : FinRing.UnitAlgebra.type >-> Funclass
Ambiguous paths:
[FinRing.UnitAlgebra.finUnitRingType; FinRing.UnitRing.finRingType] : FinRing.UnitAlgebra.type >-> FinRing.Ring.type
[FinRing.UnitAlgebra.finUnitRingType; FinRing.UnitRing.finZmodType] : FinRing.UnitAlgebra.type >-> FinRing.Zmodule.type
[FinRing.UnitAlgebra.finUnitRingType; FinRing.UnitRing.finZmodType;
 FinRing.Zmodule.finGroupType] : FinRing.UnitAlgebra.type >-> FinGroup.type
[FinRing.UnitAlgebra.finUnitRingType; FinRing.UnitRing.finZmodType;
 FinRing.Zmodule.baseFinGroupType; FinGroup.mixin] : FinRing.UnitAlgebra.type >-> FinGroup.mixin_of
[FinRing.UnitAlgebra.finUnitRingType; FinRing.UnitRing.finZmodType;
 FinRing.Zmodule.baseFinGroupType] : FinRing.UnitAlgebra.type >-> FinGroup.base_type
[FinRing.UnitAlgebra.finUnitRingType; FinRing.UnitRing.unitRingType] : FinRing.UnitAlgebra.type >-> GRing.UnitRing.type
[FinRing.UnitAlgebra.finUnitRingType; FinRing.UnitRing.ringType] : FinRing.UnitAlgebra.type >-> GRing.Ring.type
[FinRing.UnitAlgebra.finUnitRingType; FinRing.UnitRing.zmodType] : FinRing.UnitAlgebra.type >-> GRing.Zmodule.type
[FinRing.UnitAlgebra.finUnitRingType; FinRing.UnitRing.finType] : FinRing.UnitAlgebra.type >-> Finite.type
[FinRing.UnitAlgebra.finUnitRingType; FinRing.UnitRing.countType] : FinRing.UnitAlgebra.type >-> Countable.type
[FinRing.UnitAlgebra.finUnitRingType; FinRing.UnitRing.choiceType] : FinRing.UnitAlgebra.type >-> Choice.type
[FinRing.UnitAlgebra.finUnitRingType; FinRing.UnitRing.eqType] : FinRing.UnitAlgebra.type >-> Equality.type
[FinRing.UnitAlgebra.finUnitRingType; FinRing.UnitRing.eqType; Equality.sort] : FinRing.UnitAlgebra.type >-> predArgType
[FinRing.UnitAlgebra.finUnitRingType; FinRing.UnitRing.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : FinRing.UnitAlgebra.type >-> pred_sort
[FinRing.UnitAlgebra.finUnitRingType; FinRing.UnitRing.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : FinRing.UnitAlgebra.type >-> collective_pred
[FinRing.UnitAlgebra.finUnitRingType; FinRing.UnitRing.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : FinRing.UnitAlgebra.type >-> applicative_pred
[FinRing.UnitAlgebra.finUnitRingType; FinRing.UnitRing.eqType; Equality.sort;
 pred_of_argType] : FinRing.UnitAlgebra.type >-> simpl_pred
[FinRing.UnitAlgebra.finUnitRingType; FinRing.UnitRing.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : FinRing.UnitAlgebra.type >-> pred
[FinRing.UnitAlgebra.finUnitRingType; FinRing.UnitRing.sort] : FinRing.UnitAlgebra.type >-> Sortclass
[FinRing.UnitAlgebra.finUnitRingType; FinRing.UnitRing.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : FinRing.UnitAlgebra.type >-> Funclass
Ambiguous paths:
[FinRing.UnitAlgebra.lmodType; GRing.Lmodule.zmodType] : FinRing.UnitAlgebra.type >-> GRing.Zmodule.type
[FinRing.UnitAlgebra.lmodType; GRing.Lmodule.choiceType] : FinRing.UnitAlgebra.type >-> Choice.type
[FinRing.UnitAlgebra.lmodType; GRing.Lmodule.eqType] : FinRing.UnitAlgebra.type >-> Equality.type
[FinRing.UnitAlgebra.lmodType; GRing.Lmodule.eqType; Equality.sort] : FinRing.UnitAlgebra.type >-> predArgType
[FinRing.UnitAlgebra.lmodType; GRing.Lmodule.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : FinRing.UnitAlgebra.type >-> pred_sort
[FinRing.UnitAlgebra.lmodType; GRing.Lmodule.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : FinRing.UnitAlgebra.type >-> collective_pred
[FinRing.UnitAlgebra.lmodType; GRing.Lmodule.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : FinRing.UnitAlgebra.type >-> applicative_pred
[FinRing.UnitAlgebra.lmodType; GRing.Lmodule.eqType; Equality.sort;
 pred_of_argType] : FinRing.UnitAlgebra.type >-> simpl_pred
[FinRing.UnitAlgebra.lmodType; GRing.Lmodule.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : FinRing.UnitAlgebra.type >-> pred
[FinRing.UnitAlgebra.lmodType; GRing.Lmodule.sort] : FinRing.UnitAlgebra.type >-> Sortclass
[FinRing.UnitAlgebra.lmodType; GRing.Lmodule.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : FinRing.UnitAlgebra.type >-> Funclass
Ambiguous paths:
[FinRing.UnitAlgebra.finLmodType; FinRing.Lmodule.finZmodType] : FinRing.UnitAlgebra.type >-> FinRing.Zmodule.type
[FinRing.UnitAlgebra.finLmodType; FinRing.Lmodule.finZmodType;
 FinRing.Zmodule.finGroupType] : FinRing.UnitAlgebra.type >-> FinGroup.type
[FinRing.UnitAlgebra.finLmodType; FinRing.Lmodule.finZmodType;
 FinRing.Zmodule.baseFinGroupType; FinGroup.mixin] : FinRing.UnitAlgebra.type >-> FinGroup.mixin_of
[FinRing.UnitAlgebra.finLmodType; FinRing.Lmodule.finZmodType;
 FinRing.Zmodule.baseFinGroupType] : FinRing.UnitAlgebra.type >-> FinGroup.base_type
[FinRing.UnitAlgebra.finLmodType; FinRing.Lmodule.lmodType] : FinRing.UnitAlgebra.type >-> GRing.Lmodule.type
[FinRing.UnitAlgebra.finLmodType; FinRing.Lmodule.zmodType] : FinRing.UnitAlgebra.type >-> GRing.Zmodule.type
[FinRing.UnitAlgebra.finLmodType; FinRing.Lmodule.finType] : FinRing.UnitAlgebra.type >-> Finite.type
[FinRing.UnitAlgebra.finLmodType; FinRing.Lmodule.countType] : FinRing.UnitAlgebra.type >-> Countable.type
[FinRing.UnitAlgebra.finLmodType; FinRing.Lmodule.choiceType] : FinRing.UnitAlgebra.type >-> Choice.type
[FinRing.UnitAlgebra.finLmodType; FinRing.Lmodule.eqType] : FinRing.UnitAlgebra.type >-> Equality.type
[FinRing.UnitAlgebra.finLmodType; FinRing.Lmodule.eqType; Equality.sort] : FinRing.UnitAlgebra.type >-> predArgType
[FinRing.UnitAlgebra.finLmodType; FinRing.Lmodule.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : FinRing.UnitAlgebra.type >-> pred_sort
[FinRing.UnitAlgebra.finLmodType; FinRing.Lmodule.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : FinRing.UnitAlgebra.type >-> collective_pred
[FinRing.UnitAlgebra.finLmodType; FinRing.Lmodule.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : FinRing.UnitAlgebra.type >-> applicative_pred
[FinRing.UnitAlgebra.finLmodType; FinRing.Lmodule.eqType; Equality.sort;
 pred_of_argType] : FinRing.UnitAlgebra.type >-> simpl_pred
[FinRing.UnitAlgebra.finLmodType; FinRing.Lmodule.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : FinRing.UnitAlgebra.type >-> pred
[FinRing.UnitAlgebra.finLmodType; FinRing.Lmodule.sort] : FinRing.UnitAlgebra.type >-> Sortclass
[FinRing.UnitAlgebra.finLmodType; FinRing.Lmodule.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : FinRing.UnitAlgebra.type >-> Funclass
Ambiguous paths:
[FinRing.UnitAlgebra.lalgType; GRing.Lalgebra.lmodType] : FinRing.UnitAlgebra.type >-> GRing.Lmodule.type
[FinRing.UnitAlgebra.lalgType; GRing.Lalgebra.ringType] : FinRing.UnitAlgebra.type >-> GRing.Ring.type
[FinRing.UnitAlgebra.lalgType; GRing.Lalgebra.zmodType] : FinRing.UnitAlgebra.type >-> GRing.Zmodule.type
[FinRing.UnitAlgebra.lalgType; GRing.Lalgebra.choiceType] : FinRing.UnitAlgebra.type >-> Choice.type
[FinRing.UnitAlgebra.lalgType; GRing.Lalgebra.eqType] : FinRing.UnitAlgebra.type >-> Equality.type
[FinRing.UnitAlgebra.lalgType; GRing.Lalgebra.eqType; Equality.sort] : FinRing.UnitAlgebra.type >-> predArgType
[FinRing.UnitAlgebra.lalgType; GRing.Lalgebra.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : FinRing.UnitAlgebra.type >-> pred_sort
[FinRing.UnitAlgebra.lalgType; GRing.Lalgebra.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : FinRing.UnitAlgebra.type >-> collective_pred
[FinRing.UnitAlgebra.lalgType; GRing.Lalgebra.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : FinRing.UnitAlgebra.type >-> applicative_pred
[FinRing.UnitAlgebra.lalgType; GRing.Lalgebra.eqType; Equality.sort;
 pred_of_argType] : FinRing.UnitAlgebra.type >-> simpl_pred
[FinRing.UnitAlgebra.lalgType; GRing.Lalgebra.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : FinRing.UnitAlgebra.type >-> pred
[FinRing.UnitAlgebra.lalgType; GRing.Lalgebra.sort] : FinRing.UnitAlgebra.type >-> Sortclass
[FinRing.UnitAlgebra.lalgType; GRing.Lalgebra.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : FinRing.UnitAlgebra.type >-> Funclass
Ambiguous paths:
[FinRing.UnitAlgebra.finLalgType; FinRing.Lalgebra.finLmodType] : FinRing.UnitAlgebra.type >-> FinRing.Lmodule.type
[FinRing.UnitAlgebra.finLalgType; FinRing.Lalgebra.finRingType] : FinRing.UnitAlgebra.type >-> FinRing.Ring.type
[FinRing.UnitAlgebra.finLalgType; FinRing.Lalgebra.finZmodType] : FinRing.UnitAlgebra.type >-> FinRing.Zmodule.type
[FinRing.UnitAlgebra.finLalgType; FinRing.Lalgebra.finZmodType;
 FinRing.Zmodule.finGroupType] : FinRing.UnitAlgebra.type >-> FinGroup.type
[FinRing.UnitAlgebra.finLalgType; FinRing.Lalgebra.finZmodType;
 FinRing.Zmodule.baseFinGroupType; FinGroup.mixin] : FinRing.UnitAlgebra.type >-> FinGroup.mixin_of
[FinRing.UnitAlgebra.finLalgType; FinRing.Lalgebra.finZmodType;
 FinRing.Zmodule.baseFinGroupType] : FinRing.UnitAlgebra.type >-> FinGroup.base_type
[FinRing.UnitAlgebra.finLalgType; FinRing.Lalgebra.lalgType] : FinRing.UnitAlgebra.type >-> GRing.Lalgebra.type
[FinRing.UnitAlgebra.finLalgType; FinRing.Lalgebra.lmodType] : FinRing.UnitAlgebra.type >-> GRing.Lmodule.type
[FinRing.UnitAlgebra.finLalgType; FinRing.Lalgebra.ringType] : FinRing.UnitAlgebra.type >-> GRing.Ring.type
[FinRing.UnitAlgebra.finLalgType; FinRing.Lalgebra.zmodType] : FinRing.UnitAlgebra.type >-> GRing.Zmodule.type
[FinRing.UnitAlgebra.finLalgType; FinRing.Lalgebra.finType] : FinRing.UnitAlgebra.type >-> Finite.type
[FinRing.UnitAlgebra.finLalgType; FinRing.Lalgebra.countType] : FinRing.UnitAlgebra.type >-> Countable.type
[FinRing.UnitAlgebra.finLalgType; FinRing.Lalgebra.choiceType] : FinRing.UnitAlgebra.type >-> Choice.type
[FinRing.UnitAlgebra.finLalgType; FinRing.Lalgebra.eqType] : FinRing.UnitAlgebra.type >-> Equality.type
[FinRing.UnitAlgebra.finLalgType; FinRing.Lalgebra.eqType; Equality.sort] : FinRing.UnitAlgebra.type >-> predArgType
[FinRing.UnitAlgebra.finLalgType; FinRing.Lalgebra.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : FinRing.UnitAlgebra.type >-> pred_sort
[FinRing.UnitAlgebra.finLalgType; FinRing.Lalgebra.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : FinRing.UnitAlgebra.type >-> collective_pred
[FinRing.UnitAlgebra.finLalgType; FinRing.Lalgebra.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : FinRing.UnitAlgebra.type >-> applicative_pred
[FinRing.UnitAlgebra.finLalgType; FinRing.Lalgebra.eqType; Equality.sort;
 pred_of_argType] : FinRing.UnitAlgebra.type >-> simpl_pred
[FinRing.UnitAlgebra.finLalgType; FinRing.Lalgebra.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : FinRing.UnitAlgebra.type >-> pred
[FinRing.UnitAlgebra.finLalgType; FinRing.Lalgebra.sort] : FinRing.UnitAlgebra.type >-> Sortclass
[FinRing.UnitAlgebra.finLalgType; FinRing.Lalgebra.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : FinRing.UnitAlgebra.type >-> Funclass
Ambiguous paths:
[FinRing.UnitAlgebra.algType; GRing.Algebra.lalgType] : FinRing.UnitAlgebra.type >-> GRing.Lalgebra.type
[FinRing.UnitAlgebra.algType; GRing.Algebra.lmodType] : FinRing.UnitAlgebra.type >-> GRing.Lmodule.type
[FinRing.UnitAlgebra.algType; GRing.Algebra.ringType] : FinRing.UnitAlgebra.type >-> GRing.Ring.type
[FinRing.UnitAlgebra.algType; GRing.Algebra.zmodType] : FinRing.UnitAlgebra.type >-> GRing.Zmodule.type
[FinRing.UnitAlgebra.algType; GRing.Algebra.choiceType] : FinRing.UnitAlgebra.type >-> Choice.type
[FinRing.UnitAlgebra.algType; GRing.Algebra.eqType] : FinRing.UnitAlgebra.type >-> Equality.type
[FinRing.UnitAlgebra.algType; GRing.Algebra.eqType; Equality.sort] : FinRing.UnitAlgebra.type >-> predArgType
[FinRing.UnitAlgebra.algType; GRing.Algebra.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : FinRing.UnitAlgebra.type >-> pred_sort
[FinRing.UnitAlgebra.algType; GRing.Algebra.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : FinRing.UnitAlgebra.type >-> collective_pred
[FinRing.UnitAlgebra.algType; GRing.Algebra.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : FinRing.UnitAlgebra.type >-> applicative_pred
[FinRing.UnitAlgebra.algType; GRing.Algebra.eqType; Equality.sort;
 pred_of_argType] : FinRing.UnitAlgebra.type >-> simpl_pred
[FinRing.UnitAlgebra.algType; GRing.Algebra.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : FinRing.UnitAlgebra.type >-> pred
[FinRing.UnitAlgebra.algType; GRing.Algebra.sort] : FinRing.UnitAlgebra.type >-> Sortclass
[FinRing.UnitAlgebra.algType; GRing.Algebra.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : FinRing.UnitAlgebra.type >-> Funclass
Ambiguous paths:
[FinRing.UnitAlgebra.finAlgType; FinRing.Algebra.finLalgType] : FinRing.UnitAlgebra.type >-> FinRing.Lalgebra.type
[FinRing.UnitAlgebra.finAlgType; FinRing.Algebra.finLmodType] : FinRing.UnitAlgebra.type >-> FinRing.Lmodule.type
[FinRing.UnitAlgebra.finAlgType; FinRing.Algebra.finRingType] : FinRing.UnitAlgebra.type >-> FinRing.Ring.type
[FinRing.UnitAlgebra.finAlgType; FinRing.Algebra.finZmodType] : FinRing.UnitAlgebra.type >-> FinRing.Zmodule.type
[FinRing.UnitAlgebra.finAlgType; FinRing.Algebra.finZmodType;
 FinRing.Zmodule.finGroupType] : FinRing.UnitAlgebra.type >-> FinGroup.type
[FinRing.UnitAlgebra.finAlgType; FinRing.Algebra.finZmodType;
 FinRing.Zmodule.baseFinGroupType; FinGroup.mixin] : FinRing.UnitAlgebra.type >-> FinGroup.mixin_of
[FinRing.UnitAlgebra.finAlgType; FinRing.Algebra.finZmodType;
 FinRing.Zmodule.baseFinGroupType] : FinRing.UnitAlgebra.type >-> FinGroup.base_type
[FinRing.UnitAlgebra.finAlgType; FinRing.Algebra.algType] : FinRing.UnitAlgebra.type >-> GRing.Algebra.type
[FinRing.UnitAlgebra.finAlgType; FinRing.Algebra.lalgType] : FinRing.UnitAlgebra.type >-> GRing.Lalgebra.type
[FinRing.UnitAlgebra.finAlgType; FinRing.Algebra.lmodType] : FinRing.UnitAlgebra.type >-> GRing.Lmodule.type
[FinRing.UnitAlgebra.fiWarning: Ignoring canonical projection to GRing.Zmodule.sort by FinGroup.sort in FinRing.UnitAlgebra.join_baseFinGroupType: redundant with FinRing.Zmodule.join_baseFinGroupType
nAlgType; FinRing.Algebra.ringType] : FinRing.UnitAlgebra.type >-> GRing.Ring.type
[FinRing.UnitAlgebra.finAlgType; FinRing.Algebra.zmodType] : FinRing.UnitAlgebra.type >-> GRing.Zmodule.type
[FinRing.UnitAlgebra.finAlgType; FinRing.Algebra.finType] : FinRing.UnitAlgebra.type >-> Finite.type
[FinRing.UnitAlgebra.finAlgType; FinRing.Algebra.countType] : FinRing.UnitAlgebra.type >-> Countable.type
[FinRing.UnitAlgebra.finAlgType; FinRing.Algebra.choiceType] : FinRing.UnitAlgebra.type >-> Choice.type
[FinRing.UnitAlgebra.finAlgType; FinRing.Algebra.eqType] : FinRing.UnitAlgebra.type >-> Equality.type
[FinRing.UnitAlgebra.finAlgType; FinRing.Algebra.eqType; Equality.sort] : FinRing.UnitAlgebra.type >-> predArgType
[FinRing.UnitAlgebra.finAlgType; FinRing.Algebra.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : FinRing.UnitAlgebra.type >-> pred_sort
[FinRing.UnitAlgebra.finAlgType; FinRing.Algebra.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : FinRing.UnitAlgebra.type >-> collective_pred
[FinRing.UnitAlgebra.finAlgType; FinRing.Algebra.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : FinRing.UnitAlgebra.type >-> applicative_pred
[FinRing.UnitAlgebra.finAlgType; FinRing.Algebra.eqType; Equality.sort;
 pred_of_argType] : FinRing.UnitAlgebra.type >-> simpl_pred
[FinRing.UnitAlgebra.finAlgType; FinRing.Algebra.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : FinRing.UnitAlgebra.type >-> pred
[FinRing.UnitAlgebra.finAlgType; FinRing.Algebra.sort] : FinRing.UnitAlgebra.type >-> Sortclass
[FinRing.UnitAlgebra.finAlgType; FinRing.Algebra.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : FinRing.UnitAlgebra.type >-> Funclass
Ambiguous paths:
[FinRing.UnitAlgebra.unitAlgType; GRing.UnitAlgebra.unitRingType] : FinRing.UnitAlgebra.type >-> GRing.UnitRing.type
[FinRing.UnitAlgebra.unitAlgType; GRing.UnitAlgebra.algType] : FinRing.UnitAlgebra.type >-> GRing.Algebra.type
[FinRing.UnitAlgebra.unitAlgType; GRing.UnitAlgebra.lalgType] : FinRing.UnitAlgebra.type >-> GRing.Lalgebra.type
[FinRing.UnitAlgebra.unitAlgType; GRing.UnitAlgebra.lmodType] : FinRing.UnitAlgebra.type >-> GRing.Lmodule.type
[FinRing.UnitAlgebra.unitAlgType; GRing.UnitAlgebra.ringType] : FinRing.UnitAlgebra.type >-> GRing.Ring.type
[FinRing.UnitAlgebra.unitAlgType; GRing.UnitAlgebra.zmodType] : FinRing.UnitAlgebra.type >-> GRing.Zmodule.type
[FinRing.UnitAlgebra.unitAlgType; GRing.UnitAlgebra.choiceType] : FinRing.UnitAlgebra.type >-> Choice.type
[FinRing.UnitAlgebra.unitAlgType; GRing.UnitAlgebra.eqType] : FinRing.UnitAlgebra.type >-> Equality.type
[FinRing.UnitAlgebra.unitAlgType; GRing.UnitAlgebra.eqType; Equality.sort] : FinRing.UnitAlgebra.type >-> predArgType
[FinRing.UnitAlgebra.unitAlgType; GRing.UnitAlgebra.eqType; Equality.sort;
 pred_of_argType; sort_of_simpl_pred] : FinRing.UnitAlgebra.type >-> pred_sort
[FinRing.UnitAlgebra.unitAlgType; GRing.UnitAlgebra.eqType; Equality.sort;
 pred_of_argType; collective_pred_of_simpl] : FinRing.UnitAlgebra.type >-> collective_pred
[FinRing.UnitAlgebra.unitAlgType; GRing.UnitAlgebra.eqType; Equality.sort;
 pred_of_argType; applicative_pred_of_simpl] : FinRing.UnitAlgebra.type >-> applicative_pred
[FinRing.UnitAlgebra.unitAlgType; GRing.UnitAlgebra.eqType; Equality.sort;
 pred_of_argType] : FinRing.UnitAlgebra.type >-> simpl_pred
[FinRing.UnitAlgebra.unitAlgType; GRing.UnitAlgebra.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl] : FinRing.UnitAlgebra.type >-> pred
[FinRing.UnitAlgebra.unitAlgType; GRing.UnitAlgebra.sort] : FinRing.UnitAlgebra.type >-> Sortclass
[FinRing.UnitAlgebra.unitAlgType; GRing.UnitAlgebra.eqType; Equality.sort;
 pred_of_argType; pred_of_simpl; fun_of_pred] : FinRing.UnitAlgebra.type >-> Funclass


Require Import perm zmodp ssrint.
Warning: Ignoring canonical projection to Perm by Sub in perm_for_subType: redundant with perm_subType
Warning: Ignoring canonical projection to pval by val in perm_for_subType: redundant with perm_subType



Set Implicit Arguments.

Unset Strict Implicit.

Unset Printing Implicit Defensive.


Import GroupScope.

Import GRing.Theory.

Open Scope ring_scope.


Reserved Notation "''M[' R ]_ n" (at level 8, n at level 2, format "''M[' R ]_ n").

Reserved Notation "''M[' R ]_ ( m , n )" (at level 8, format "''M[' R ]_ ( m , n )").


Reserved Notation "\matrix_ ( i , j ) E"
  (at level 36, E at level 36, i, j at level 50,
   format "\matrix_ ( i , j ) E").


Reserved Notation "x %:M" (at level 8, format "x %:M").

Reserved Notation "A *m B" (at level 40, left associativity, format "A *m B").

Reserved Notation "A ^T" (at level 8, format "A ^T").

Reserved Notation "\tr A" (at level 10, A at level 8, format "\tr A").


(* For the beamer with large fonts *)
Set Printing Width 40.

(* This line is 57 columns                             *)

end preamble

(* This is PG, script, goal, messages *)

(* natural numbers and boolean *)
Check 2.
2
     : nat


Check true.
true
     : bool



(* The infix comparison operator is overloaded *)
Check 2 == 3.
2 == 3
     : bool


Check true == false.
true == false
     : bool



(* We can use "_ == _" inside formulas too *)
(* Meaning: "_ == _" computes to true      *)
Check exists b : bool, b == false.
exists b : bool, b == false
     : Prop



(* "_ == _" is ad-hoc polymorphic, like in Haskell *)
Eval compute in 2 == 3.
= false
     : bool


Fail Check (fun x => x + 2) == (fun x => x * 2).
The command has indeed failed with message:
=> Error:
   The type of this term is a product
   while it is expected to be
    "Equality.sort ?6".



(* To test if a type can be used with _ == _ *)
Check [eqType of nat].
[eqType of nat]
     : eqType


Fail Check [eqType of nat -> nat].
The command has indeed failed with message:
=> Error: In environment
   x : ?8
   The term "x" has type
    "Equality.sort ?8"
    while it is expected to have type
    "nat -> nat".



(* finite functions (with finite domains) *)
Check forall f1 f2 : {ffun bool -> nat}, f1 == f2.
forall f1 f2 : {ffun bool -> nat},
f1 == f2
     : Prop



(* of course nat is not a finite type *)
Fail Check forall f1 f2 : {ffun nat -> nat}, f1 == f2.
The command has indeed failed with message:
=> Error: The term "Phant (nat -> nat)"
   has type "phant (nat -> nat)"
    while it is expected to have type
    "phant (?15 -> ?16)".



(* finite ordinals: 'I_n *)
Check forall f1 f2 : {ffun 'I_3 -> nat}, f1 == f2.
forall f1 f2 : {ffun 'I_3 -> nat},
f1 == f2
     : Prop



(* Pairing preserves finiteness *)
Check [finType of bool * 'I_3].
[finType of bool * 'I_3]
     : finType


Check forall f1 f2 : {ffun bool * 'I_3 -> nat}, f1 == f2.
forall
  f1 f2 : {ffun bool * 'I_3 -> nat},
f1 == f2
     : Prop



(* A matrix is a 2-dimension array              *)
(* Three parameters of which m and n are values *)
Inductive matrix (R : Type) (m n : nat) : Type :=
  Matrix of {ffun 'I_m * 'I_n -> R}.
matrix is defined
matrix_rect is defined
matrix_ind is defined
matrix_rec is defined



(* Some notations : size inside parentheses, type of *)
(* coeffficients inside square brackets.             *)
Notation "''M[' R ]_ ( m , n )" := (matrix R m n) : type_scope.

Notation "''M[' R ]_ n" := 'M[R]_(n, n) : type_scope.


(* Test *)
Check 'M[nat]_(2,3).
'M[nat]_(2, 3)
     : Type


Check 'M[nat]_2.
'M[nat]_2
     : Type



(* Generic comparison is not yet available *)
Fail Check forall A : 'M[nat]_2, A == A.
The command has indeed failed with message:
=> Error:
   In environment
   A : 'M[nat]_2
   The term "A" has type 
   "'M[nat]_2"
    while it is expected to have type
    "Equality.sort ?52".



(* "matrix" is just a tag over ffun: it inherits *)
(* from its structure                            *)
Definition mx_val R m n (A : 'M[R]_(m,n)) : {ffun 'I_m * 'I_n -> R} :=
  let: Matrix g := A in g.
mx_val is defined



Canonical matrix_subType R m n :=
  Eval hnf in [newType for @mx_val R m n].
matrix_subType is defined
Warning: No global reference exists for projection value
 fun (x : {ffun 'I__UNBOUND_REL_2 * 'I__UNBOUND_REL_1 -> _UNBOUND_REL_4})
   (_ : xpredT x) => Matrix x in instance matrix_subType of Sub, ignoring it.



(* We can "transfer" automatically all structures from *)
(* the type of finite functions to the one matrices    *)
Definition matrix_eqMixin (R : eqType) m n :=
  Eval hnf in [eqMixin of 'M[R]_(m, n) by <:].
matrix_eqMixin is defined


Canonical matrix_eqType (R : eqType) m n:=
  Eval hnf in EqType 'M[R]_(m, n) (matrix_eqMixin R m n).
matrix_eqType is defined


Definition matrix_choiceMixin (R : choiceType) m n :=
  [choiceMixin of 'M[R]_(m, n) by <:].
matrix_choiceMixin is defined


Canonical matrix_choiceType (R : choiceType) m n :=
  Eval hnf in ChoiceType 'M[R]_(m, n) (matrix_choiceMixin R m n).
matrix_choiceType is defined


Definition matrix_countMixin (R : countType) m n :=
  [countMixin of 'M[R]_(m, n) by <:].
matrix_countMixin is defined


Canonical matrix_countType (R : countType) m n :=
  Eval hnf in CountType 'M[R]_(m, n) (matrix_countMixin R m n).
matrix_countType is defined


Canonical matrix_subCountType (R : countType) m n :=
  Eval hnf in [subCountType of 'M[R]_(m, n)].
matrix_subCountType is defined


Definition matrix_finMixin (R : finType) m n :=
  [finMixin of 'M[R]_(m, n) by <:].
matrix_finMixin is defined


Canonical matrix_finType (R : finType) m n :=
  Eval hnf in FinType 'M[R]_(m, n) (matrix_finMixin R m n).
matrix_finType is defined



(* Test overloaded "_ == _" notation *)
Check [eqType of 'M[nat]_2].
[eqType of 'M[nat]_2]
     : eqType


Check forall A : 'M[nat]_2, A == A.
forall A : 'M[nat]_2, A == A
     : Prop



(* Since matrices over nat are comparable with _ == _, *)
(* also matrices over matrices over nat are comparable *)
Check forall AA : 'M[ 'M[nat]_3 ]_2, AA == AA.
forall AA : 'M['M[nat]_3]_2, AA == AA
     : Prop



(* Accessing elements as if matrices were functions *)
Definition fun_of_mx R m n (A : 'M[R]_(m,n)) : 'I_m -> 'I_n -> R :=
  fun i j => mx_val A (i, j).
fun_of_mx is defined


Coercion fun_of_mx : matrix >-> Funclass.
fun_of_mx is now a coercion



Check forall (A : 'M[nat]_3) i j, A i j == 37.
forall (A : 'M[nat]_3) (i j : 'I_3),
A i j == 37
     : Prop



(* Building a matrix explicitly *)
Definition mx_of_fun R m n (F : 'I_m -> 'I_n -> R) : 'M[R]_(m,n) :=
  Matrix [ffun ij => F ij.1 ij.2].
mx_of_fun is defined


Notation "\matrix_ ( i , j ) E" := (mx_of_fun (fun i j => E))
  (at level 36, E at level 36, i, j at level 50) : ring_scope.


Check \matrix_(i,j) (i - j)%N : 'M[nat]_(3,4).
\matrix_(i, j) (i - j)%N
  : 'M[nat]_(3, 4)
     : 'M[nat]_(3, 4)



(* Utility lemmas *)
Lemma mxE R m n (F : 'I_m -> 'I_n -> R) :
  forall i j, (\matrix_(x,y) F x y) i j = F i j.
1 subgoals, subgoal 1 (ID 371)
  
  R : Type
  m : nat
  n : nat
  F : 'I_m -> 'I_n -> R
  ============================
   forall (i : 'I_m) (j : 'I_n),
   (\matrix_(x, y) F x y) i j = F i j


(dependent evars:)


Proof.
1 subgoals, subgoal 1 (ID 371)
  
  R : Type
  m : nat
  n : nat
  F : 'I_m -> 'I_n -> R
  ============================
   forall (i : 'I_m) (j : 'I_n),
   (\matrix_(x, y) F x y) i j = F i j


(dependent evars:)

by move=> i j; rewrite /fun_of_mx /= ffunE.
No more subgoals.

(dependent evars:)

Qed.
mxE is defined



Lemma matrixP R n m (A B : 'M[R]_(n,m)) :
  (forall i j, A i j = B i j) <-> A = B.
1 subgoals, subgoal 1 (ID 404)
  
  R : Type
  n : nat
  m : nat
  A : 'M[R]_(n, m)
  B : 'M[R]_(n, m)
  ============================
   (forall (i : 'I_n) (j : 'I_m),
    A i j = B i j) <-> 
   A = B


(dependent evars:)


Proof.
1 subgoals, subgoal 1 (ID 404)
  
  R : Type
  n : nat
  m : nat
  A : 'M[R]_(n, m)
  B : 'M[R]_(n, m)
  ============================
   (forall (i : 'I_n) (j : 'I_m),
    A i j = B i j) <-> 
   A = B


(dependent evars:)


rewrite /fun_of_mx; split=> [/= eqAB | -> //].
1 subgoals, subgoal 1 (ID 410)
  
  R : Type
  n : nat
  m : nat
  A : 'M[R]_(n, m)
  B : 'M[R]_(n, m)
  eqAB : forall (i : 'I_n) (j : 'I_m),
         (mx_val A) (i, j) =
         (mx_val B) (i, j)
  ============================
   A = B


(dependent evars:)


by apply/val_inj/ffunP=> [[i j]]; exact: eqAB.
No more subgoals.

(dependent evars:)


Qed.
matrixP is defined



(* How can we guess the addition operation needed to *)
(* add elements in R if R is completely arbitrary?   *)
Fail Definition mxtrace (R : Type) n (A : 'M[R]_n) :=
  \sum_(k in 'I_n) A k k.
The command has indeed failed with message:
=> Error:
   In environment
   R : Type
   n : nat
   A : 'M[R]_n
   k : ordinal_finType n
   The term "A k k" has type 
   "R"
    while it is expected to have type
    "GRing.Zmodule.sort ?662".



Check forall (R : zmodType) (x y : R), x + y == 0.
forall (R : zmodType) (x y : R),
x + y == 0
     : Prop



(* Let us replace Type by zmodType *)
Definition mxtrace (R : zmodType) n (A : 'M[R]_n) :=
  \sum_(k in 'I_n) A k k.
mxtrace is defined



Reset mxtrace.

Definition mxtrace (R : zmodType) n (A : 'M[R]_n) :=
  \sum_k A k k.
mxtrace is defined


Notation "'\tr' A" := (mxtrace A).


(* We use the facility of defining a matrix in     *)
(* extension to define the transposition operation *)
(* which computes the symmetric of a matrix        *)
Definition trmx R n m (A : 'M[R]_(n,m)) :=
  \matrix_(i, j) A j i.
trmx is defined


Notation "A ^T" := (trmx A).
(* Latex style *)

(* transposition preserves the trace *)
Lemma mxtrace_tr (R : zmodType) n (A : 'M[R]_n) :
  \tr A = \tr A^T.
1 subgoals, subgoal 1 (ID 697)
  
  R : zmodType
  n : nat
  A : 'M[R]_n
  ============================
   \tr A = \tr A^T


(dependent evars:)


Proof.
1 subgoals, subgoal 1 (ID 697)
  
  R : zmodType
  n : nat
  A : 'M[R]_n
  ============================
   \tr A = \tr A^T


(dependent evars:)


rewrite /trmx.
1 subgoals, subgoal 1 (ID 698)
  
  R : zmodType
  n : nat
  A : 'M[R]_n
  ============================
   \tr A = \tr (\matrix_(i, j) A j i)


(dependent evars:)


rewrite /mxtrace.
1 subgoals, subgoal 1 (ID 699)
  
  R : zmodType
  n : nat
  A : 'M[R]_n
  ============================
   \sum_k A k k =
   \sum_k (\matrix_(i, j) A j i) k k


(dependent evars:)


apply: eq_bigr => /= k _.
1 subgoals, subgoal 1 (ID 756)
  
  R : zmodType
  n : nat
  A : 'M[R]_n
  k : 'I_n
  ============================
   A k k = (\matrix_(i, j) A j i) k k


(dependent evars:)


rewrite mxE.
1 subgoals, subgoal 1 (ID 764)
  
  R : zmodType
  n : nat
  A : 'M[R]_n
  k : 'I_n
  ============================
   A k k = A k k


(dependent evars:)


by [].
No more subgoals.

(dependent evars:)


Qed.
mxtrace_tr is defined



(* We define the product of two matrix in extension. *)

(* We do not yet have a product on elements of R! *)
Fail Definition mulmx {R : zmodType} {m n p}
  : 'M[R]_(m, n) -> 'M[R]_(n, p) -> 'M[R]_(m, p)
  := fun A B => \matrix_(i, k) \sum_j (A i j * B j k).
The command has indeed failed with message:
=> Error:
   In environment
   R : zmodType
   m : nat
   n : nat
   p : nat
   A : 'M[R]_(m, n)
   B : 'M[R]_(n, p)
   i : 'I_m
   k : 'I_?774
   j : ordinal_finType n
   The term "A i j" has type
    "GRing.Zmodule.sort R"
    while it is expected to have type
    "GRing.Ring.sort ?780".



(* To have a product, coefficient must be in a ring *)
Definition mulmx {R : ringType} {m n p}
  : 'M[R]_(m, n) -> 'M[R]_(n, p) -> 'M[R]_(m, p)
  := fun A B => \matrix_(i, k) \sum_j (A i j * B j k).
mulmx is defined


Notation "A *m B" := (mulmx A B).


(* Let's try *)
Check forall (R : ringType) (A : 'M[R]_2),
                A *m A == A *m A.
forall (R : ringType) (A : 'M[R]_2),
A *m A == A *m A
     : Prop



(* If sizes of matrices do not agree the expression *)
(* is rejected by the typechecker                   *)
Fail Check forall (R : ringType)
             (A : 'M[R]_2) (B : 'M[R]_3),
                A *m B == A *m B.
The command has indeed failed with message:
=> Error:
   In environment
   R : ringType
   A : 'M[R]_2
   B : 'M[R]_3
   The term "B" has type 
   "'M[R]_3"
    while it is expected to have type
    "'M[R]_(2, ?807)".



(* Size constraints are checked on the whole *)
(* expression                                *)
Fail Check forall (R : ringType),
           forall (A : 'M[R]_(2,3)) (B : 'M[R]_(3,7)),
             A *m B == A.
The command has indeed failed with message:
=> Error:
   In environment
   R : ringType
   A : 'M[R]_(2, 3)
   B : 'M[R]_(3, 7)
   The term "A" has type 
   "'M[R]_(2, 3)"
    while it is expected to have type
    "Equality.sort
       (matrix_eqType R 2 7)".



(* Sizes are also be inferred, hence can be omitted *)
Check forall (R : ringType) (A : 'M[R]_2) B,
             A *m B == A.
forall (R : ringType) (A B : 'M[R]_2),
A *m B == A
     : Prop



Definition scalar_mx {R : zmodType} {n} x : 'M[R]_n :=
  \matrix_(i , j) (if i == j then x else 0).
scalar_mx is defined


Notation "x %:M" := (scalar_mx x) : ring_scope.


(* Scalar matrices are stretched to the right size *)
Check forall (R : ringType) (A : 'M[R]_2),
             A *m 1%:M == A.
forall (R : ringType) (A : 'M[R]_2),
A *m 1%:M == A
     : Prop



(* Does this hold if the coefficients are in a ring? *)
Lemma mxtrace_mulC (R : ringType) m n (A : 'M[R]_(m,n)) B :
  \tr (A *m B) = \tr (B *m A).
1 subgoals, subgoal 1 (ID 875)
  
  R : ringType
  m : nat
  n : nat
  A : 'M[R]_(m, n)
  B : 'M[R]_(n, m)
  ============================
   \tr (A *m B) = \tr (B *m A)


(dependent evars:)


Proof.
1 subgoals, subgoal 1 (ID 875)
  
  R : ringType
  m : nat
  n : nat
  A : 'M[R]_(m, n)
  B : 'M[R]_(n, m)
  ============================
   \tr (A *m B) = \tr (B *m A)


(dependent evars:)


have trM k l C D :
  \tr (C *m D) = \sum_(i < k) \sum_(j < l) C i j * D j i.
2 subgoals, subgoal 1 (ID 913)
  
  R : ringType
  m : nat
  n : nat
  A : 'M[R]_(m, n)
  B : 'M[R]_(n, m)
  _t_ : ringType
  k : nat
  l : nat
  C : 'M[_t_]_(k, l)
  D : 'M[_t_]_(l, k)
  ============================
   \tr (C *m D) =
   \sum_(i < k)
      \sum_(j < l) C i j * D j i

subgoal 2 (ID 914) is:
 \tr (A *m B) = \tr (B *m A)

(dependent evars:)


  by apply: eq_bigr => i _; rewrite mxE.
1 subgoals, subgoal 1 (ID 914)
  
  R : ringType
  m : nat
  n : nat
  A : 'M[R]_(m, n)
  B : 'M[R]_(n, m)
  trM : forall (t : ringType)
          (k l : nat)
          (C : 'M[t]_(k, l))
          (D : 'M[t]_(l, k)),
        \tr (C *m D) =
        \sum_(i < k)
           \sum_(j < l) C i j * D j i
  ============================
   \tr (A *m B) = \tr (B *m A)


(dependent evars:)


rewrite !{}trM /=.
1 subgoals, subgoal 1 (ID 999)
  
  R : ringType
  m : nat
  n : nat
  A : 'M[R]_(m, n)
  B : 'M[R]_(n, m)
  ============================
   \sum_(i < m)
      \sum_(j < n) A i j * B j i =
   \sum_(i < n)
      \sum_(j < m) B i j * A j i


(dependent evars:)


rewrite exchange_big /=.
1 subgoals, subgoal 1 (ID 1016)
  
  R : ringType
  m : nat
  n : nat
  A : 'M[R]_(m, n)
  B : 'M[R]_(n, m)
  ============================
   \sum_(j < n)
      \sum_(i < m) A i j * B j i =
   \sum_(i < n)
      \sum_(j < m) B i j * A j i


(dependent evars:)


apply: eq_bigr => j _; apply: eq_bigr => i _.
1 subgoals, subgoal 1 (ID 1128)
  
  R : ringType
  m : nat
  n : nat
  A : 'M[R]_(m, n)
  B : 'M[R]_(n, m)
  j : 'I_n
  i : 'I_m
  ============================
   A i j * B j i = B j i * A i j


(dependent evars:)


Fail exact: mulrC.
The command has indeed failed with message:
=> Error: Cannot apply lemma mulrC


(* oops our ring is not commutative! *)
Fail Check (@mulrC R).
The command has indeed failed with message:
=> Error:
   In environment
   R : ringType
   m : nat
   n : nat
   A : 'M[R]_(m, n)
   B : 'M[R]_(n, m)
   j : 'I_n
   i : 'I_m
   The term "R" has type 
   "ringType"
    while it is expected to have type
    "comRingType".


Abort.
Current goal aborted



(* We can build a matrix of matrices, but we can't *)
(* multiply it.  Matrices do not form a ring yet.  *)
Fail Check forall (R : ringType),
           forall (AA : 'M[ 'M[R]_3 ]_2),
             AA *m AA == AA.
The command has indeed failed with message:
=> Error:
   In environment
   R : ringType
   AA : 'M['M[R]_3]_2
   The term "AA" has type
    "'M['M[R]_3]_2"
    while it is expected to have type
    "'M[?1130]_(?1131, ?1132)".



(* Let's build the ring of matrices *)
Definition oppmx {R:zmodType} {m n} (A : 'M[R]_(n,m)) :=
  \matrix_(i, j) (- A i j).
oppmx is defined



Definition addmx {R:zmodType} {m n} (A B: 'M[R]_(n,m)) :=
  \matrix_(i, j) (A i j + B i j).
addmx is defined



Lemma addmxA {R m n} : associative (@addmx R m n).
1 subgoals, subgoal 1 (ID 1159)
  
  R : zmodType
  m : nat
  n : nat
  ============================
   associative addmx


(dependent evars:)


Proof.
1 subgoals, subgoal 1 (ID 1159)
  
  R : zmodType
  m : nat
  n : nat
  ============================
   associative addmx


(dependent evars:)


by move=> A B C; apply/matrixP=> i j; rewrite !mxE addrA.
No more subgoals.

(dependent evars:)


Qed.
addmxA is defined



Lemma addmxC {R m n} : commutative (@addmx R m n).
1 subgoals, subgoal 1 (ID 1303)
  
  R : zmodType
  m : nat
  n : nat
  ============================
   commutative addmx


(dependent evars:)


Proof.
1 subgoals, subgoal 1 (ID 1303)
  
  R : zmodType
  m : nat
  n : nat
  ============================
   commutative addmx


(dependent evars:)


by move=> A B; apply/matrixP=> i j; rewrite !mxE addrC.
No more subgoals.

(dependent evars:)


Qed.
addmxC is defined



Definition zero_mx {R : zmodType} {m n} : 'M[R]_(m, n) :=
  \matrix_(i, j) 0.
zero_mx is defined



Lemma add0mx {R : zmodType} {m n} :
  left_id (zero_mx : 'M[R]_(m,n)) addmx.
1 subgoals, subgoal 1 (ID 1445)
  
  R : zmodType
  m : nat
  n : nat
  ============================
   left_id (zero_mx : 'M[R]_(m, n))
     addmx


(dependent evars:)


Proof.
1 subgoals, subgoal 1 (ID 1445)
  
  R : zmodType
  m : nat
  n : nat
  ============================
   left_id (zero_mx : 'M[R]_(m, n))
     addmx


(dependent evars:)


by move=> A; apply/matrixP=> i j; rewrite !mxE add0r.
No more subgoals.

(dependent evars:)


Qed.
add0mx is defined



Lemma addNmx {R : zmodType} {m n} :
  left_inverse (zero_mx : 'M[R]_(m,n)) oppmx addmx.
1 subgoals, subgoal 1 (ID 1578)
  
  R : zmodType
  m : nat
  n : nat
  ============================
   left_inverse
     (zero_mx : 'M[R]_(m, n)) oppmx
     addmx


(dependent evars:)


Proof.
1 subgoals, subgoal 1 (ID 1578)
  
  R : zmodType
  m : nat
  n : nat
  ============================
   left_inverse
     (zero_mx : 'M[R]_(m, n)) oppmx
     addmx


(dependent evars:)


by move=> A; apply/matrixP=> i j; rewrite !mxE addNr.
No more subgoals.

(dependent evars:)


Qed.
addNmx is defined



Definition matrix_zmodMixin (R : zmodType) m n :=
  @ZmodMixin 'M[R]_(m,n) zero_mx
             oppmx addmx addmxA addmxC add0mx addNmx.
matrix_zmodMixin is defined



Canonical matrix_zmodType (R : zmodType) m n :=
  Eval hnf in ZmodType 'M[R]_(m, n)
                (matrix_zmodMixin R m n).
matrix_zmodType is defined



Example test_zmod (R : zmodType) (A : 'M[R]_(3,2)) :
  A - A == 0.
1 subgoals, subgoal 1 (ID 1755)
  
  R : zmodType
  A : 'M[R]_(3, 2)
  ============================
   A - A == 0


(dependent evars:)


Proof.
1 subgoals, subgoal 1 (ID 1755)
  
  R : zmodType
  A : 'M[R]_(3, 2)
  ============================
   A - A == 0


(dependent evars:)

rewrite subr_eq0.
1 subgoals, subgoal 1 (ID 1760)
  
  R : zmodType
  A : 'M[R]_(3, 2)
  ============================
   A == A


(dependent evars:)

exact: eqxx.
No more subgoals.

(dependent evars:)

Qed.
test_zmod is defined



Lemma mulmxA {R : ringType} {m n p q}
  (A : 'M[R]_(m, n)) B (C : 'M[R]_(p, q)) :
  A *m (B *m C) = A *m B *m C.
1 subgoals, subgoal 1 (ID 1804)
  
  R : ringType
  m : nat
  n : nat
  p : nat
  q : nat
  A : 'M[R]_(m, n)
  B : 'M[R]_(n, p)
  C : 'M[R]_(p, q)
  ============================
   A *m (B *m C) = A *m B *m C


(dependent evars:)


Proof.
1 subgoals, subgoal 1 (ID 1804)
  
  R : ringType
  m : nat
  n : nat
  p : nat
  q : nat
  A : 'M[R]_(m, n)
  B : 'M[R]_(n, p)
  C : 'M[R]_(p, q)
  ============================
   A *m (B *m C) = A *m B *m C


(dependent evars:)


apply/matrixP=> i l; rewrite !mxE.
1 subgoals, subgoal 1 (ID 1901)
  
  R : ringType
  m : nat
  n : nat
  p : nat
  q : nat
  A : 'M[R]_(m, n)
  B : 'M[R]_(n, p)
  C : 'M[R]_(p, q)
  i : 'I_m
  l : 'I_q
  ============================
   \sum_j A i j * (B *m C) j l =
   \sum_j (A *m B) i j * C j l


(dependent evars:)


transitivity (\sum_j (\sum_k (A i j * (B j k * C k l)))).
2 subgoals, subgoal 1 (ID 1924)
  
  R : ringType
  m : nat
  n : nat
  p : nat
  q : nat
  A : 'M[R]_(m, n)
  B : 'M[R]_(n, p)
  C : 'M[R]_(p, q)
  i : 'I_m
  l : 'I_q
  ============================
   \sum_j A i j * (B *m C) j l =
   \sum_j
      \sum_k A i j * (B j k * C k l)

subgoal 2 (ID 1925) is:
 \sum_j \sum_k A i j * (B j k * C k l) =
 \sum_j (A *m B) i j * C j l

(dependent evars:)


  by apply: eq_bigr => j _; rewrite mxE big_distrr.
1 subgoals, subgoal 1 (ID 1925)
  
  R : ringType
  m : nat
  n : nat
  p : nat
  q : nat
  A : 'M[R]_(m, n)
  B : 'M[R]_(n, p)
  C : 'M[R]_(p, q)
  i : 'I_m
  l : 'I_q
  ============================
   \sum_j
      \sum_k A i j * (B j k * C k l) =
   \sum_j (A *m B) i j * C j l


(dependent evars:)


rewrite exchange_big.
1 subgoals, subgoal 1 (ID 2021)
  
  R : ringType
  m : nat
  n : nat
  p : nat
  q : nat
  A : 'M[R]_(m, n)
  B : 'M[R]_(n, p)
  C : 'M[R]_(p, q)
  i : 'I_m
  l : 'I_q
  ============================
   \big[GRing.add_comoid R/0]_j
      \big[GRing.add_comoid R/0]_i0
         (A i i0 * (B i0 j * C j l)) =
   \sum_j (A *m B) i j * C j l


(dependent evars:)


apply: eq_bigr => j _; rewrite mxE big_distrl /=.
1 subgoals, subgoal 1 (ID 2108)
  
  R : ringType
  m : nat
  n : nat
  p : nat
  q : nat
  A : 'M[R]_(m, n)
  B : 'M[R]_(n, p)
  C : 'M[R]_(p, q)
  i : 'I_m
  l : 'I_q
  j : ordinal_finType p
  ============================
   \sum_(i0 < n)
      A i i0 * (B i0 j * C j l) =
   \sum_(i0 < n)
      A i i0 * B i0 j * C j l


(dependent evars:)


by apply: eq_bigr => k _; rewrite mulrA.
No more subgoals.

(dependent evars:)


Qed.
mulmxA is defined



Lemma mul1mx {R : ringType} {m n} (A : 'M[R]_(m, n)) :
  1%:M *m A = A.
1 subgoals, subgoal 1 (ID 2198)
  
  R : ringType
  m : nat
  n : nat
  A : 'M[R]_(m, n)
  ============================
   1%:M *m A = A


(dependent evars:)


Proof.
1 subgoals, subgoal 1 (ID 2198)
  
  R : ringType
  m : nat
  n : nat
  A : 'M[R]_(m, n)
  ============================
   1%:M *m A = A


(dependent evars:)


apply/matrixP=> a b; rewrite mxE.
1 subgoals, subgoal 1 (ID 2287)
  
  R : ringType
  m : nat
  n : nat
  A : 'M[R]_(m, n)
  a : 'I_m
  b : 'I_n
  ============================
   \sum_j 1%:M a j * A j b = A a b


(dependent evars:)


rewrite (bigD1 a) //= !mxE eqxx mul1r.
1 subgoals, subgoal 1 (ID 2351)
  
  R : ringType
  m : nat
  n : nat
  A : 'M[R]_(m, n)
  a : 'I_m
  b : 'I_n
  ============================
   A a b +
   \sum_(i < m | i != a)
      1%:M a i * A i b = 
   A a b


(dependent evars:)


rewrite big1 ?addr0 // => i.
1 subgoals, subgoal 1 (ID 2405)
  
  R : ringType
  m : nat
  n : nat
  A : 'M[R]_(m, n)
  a : 'I_m
  b : 'I_n
  i : 'I_m
  ============================
   i != a -> 1%:M a i * A i b = 0


(dependent evars:)


rewrite /scalar_mx mxE eq_sym => /negbTE->.
1 subgoals, subgoal 1 (ID 2479)
  
  R : ringType
  m : nat
  n : nat
  A : 'M[R]_(m, n)
  a : 'I_m
  b : 'I_n
  i : 'I_m
  ============================
   0 * A i b = 0


(dependent evars:)


exact: mul0r.
No more subgoals.

(dependent evars:)


Qed.
mul1mx is defined



Lemma mulmx1 {R : ringType} {m n} (A : 'M[R]_(m, n)) :
  A *m 1%:M = A.
1 subgoals, subgoal 1 (ID 2508)
  
  R : ringType
  m : nat
  n : nat
  A : 'M[R]_(m, n)
  ============================
   A *m 1%:M = A


(dependent evars:)


Proof.
1 subgoals, subgoal 1 (ID 2508)
  
  R : ringType
  m : nat
  n : nat
  A : 'M[R]_(m, n)
  ============================
   A *m 1%:M = A


(dependent evars:)


apply/matrixP=> a b; rewrite mxE.
1 subgoals, subgoal 1 (ID 2597)
  
  R : ringType
  m : nat
  n : nat
  A : 'M[R]_(m, n)
  a : 'I_m
  b : 'I_n
  ============================
   \sum_j A a j * 1%:M j b = A a b


(dependent evars:)


rewrite (bigD1 b) //= !mxE eqxx mulr1.
1 subgoals, subgoal 1 (ID 2661)
  
  R : ringType
  m : nat
  n : nat
  A : 'M[R]_(m, n)
  a : 'I_m
  b : 'I_n
  ============================
   A a b +
   \sum_(i < n | i != b)
      A a i * 1%:M i b = 
   A a b


(dependent evars:)


rewrite big1 ?addr0 // => i.
1 subgoals, subgoal 1 (ID 2715)
  
  R : ringType
  m : nat
  n : nat
  A : 'M[R]_(m, n)
  a : 'I_m
  b : 'I_n
  i : 'I_n
  ============================
   i != b -> A a i * 1%:M i b = 0


(dependent evars:)


by rewrite /scalar_mx mxE; move/negbTE->; exact: mulr0.
No more subgoals.

(dependent evars:)


Qed.
mulmx1 is defined



Lemma mulmxDl {R : ringType} {m n p}
  (A1 A2 : 'M[R]_(m, n)) (B : 'M[R]_(n, p)) :
    (A1 + A2) *m B = A1 *m B + A2 *m B.
1 subgoals, subgoal 1 (ID 2833)
  
  R : ringType
  m : nat
  n : nat
  p : nat
  A1 : 'M[R]_(m, n)
  A2 : 'M[R]_(m, n)
  B : 'M[R]_(n, p)
  ============================
   (A1 + A2) *m B = A1 *m B + A2 *m B


(dependent evars:)


Proof.
1 subgoals, subgoal 1 (ID 2833)
  
  R : ringType
  m : nat
  n : nat
  p : nat
  A1 : 'M[R]_(m, n)
  A2 : 'M[R]_(m, n)
  B : 'M[R]_(n, p)
  ============================
   (A1 + A2) *m B = A1 *m B + A2 *m B


(dependent evars:)


apply/matrixP=> i k; rewrite !mxE -big_split /=.
1 subgoals, subgoal 1 (ID 2970)
  
  R : ringType
  m : nat
  n : nat
  p : nat
  A1 : 'M[R]_(m, n)
  A2 : 'M[R]_(m, n)
  B : 'M[R]_(n, p)
  i : 'I_m
  k : 'I_p
  ============================
   \sum_(j < n) (A1 + A2) i j * B j k =
   \sum_(i0 < n)
      (A1 i i0 * B i0 k +
       A2 i i0 * B i0 k)


(dependent evars:)


by apply: eq_bigr => j _; rewrite !mxE -mulrDl.
No more subgoals.

(dependent evars:)


Qed.
mulmxDl is defined



Lemma mulmxDr {R : ringType} {m n p}
  (A : 'M[R]_(m, n)) (B1 B2 : 'M[R]_(n, p)) :
    A *m (B1 + B2) = A *m B1 + A *m B2.
1 subgoals, subgoal 1 (ID 3095)
  
  R : ringType
  m : nat
  n : nat
  p : nat
  A : 'M[R]_(m, n)
  B1 : 'M[R]_(n, p)
  B2 : 'M[R]_(n, p)
  ============================
   A *m (B1 + B2) = A *m B1 + A *m B2


(dependent evars:)


Proof.
1 subgoals, subgoal 1 (ID 3095)
  
  R : ringType
  m : nat
  n : nat
  p : nat
  A : 'M[R]_(m, n)
  B1 : 'M[R]_(n, p)
  B2 : 'M[R]_(n, p)
  ============================
   A *m (B1 + B2) = A *m B1 + A *m B2


(dependent evars:)


apply/matrixP=> i k; rewrite !mxE -big_split /=.
1 subgoals, subgoal 1 (ID 3232)
  
  R : ringType
  m : nat
  n : nat
  p : nat
  A : 'M[R]_(m, n)
  B1 : 'M[R]_(n, p)
  B2 : 'M[R]_(n, p)
  i : 'I_m
  k : 'I_p
  ============================
   \sum_(j < n) A i j * (B1 + B2) j k =
   \sum_(i0 < n)
      (A i i0 * B1 i0 k +
       A i i0 * B2 i0 k)


(dependent evars:)


by apply: eq_bigr => j _; rewrite mxE mulrDr.
No more subgoals.

(dependent evars:)


Qed.
mulmxDr is defined



(* Tricky: 1 and 0 are != in R, but if the dimension *)
(* is zero, both matrices are equally empty          *)
Lemma matrix_nonzero1 {R : ringType} {n} :
  1%:M != zero_mx :> 'M[R]_n.+1.
1 subgoals, subgoal 1 (ID 3331)
  
  R : ringType
  n : nat
  ============================
   1%:M != zero_mx :> 'M[R]_n.+1


(dependent evars:)


Proof.
1 subgoals, subgoal 1 (ID 3331)
  
  R : ringType
  n : nat
  ============================
   1%:M != zero_mx :> 'M[R]_n.+1


(dependent evars:)


by apply/eqP=>/matrixP/(_ 0 0)/eqP;rewrite !mxE oner_eq0.
No more subgoals.

(dependent evars:)


Qed.
matrix_nonzero1 is defined



Definition matrix_ringMixin (R : ringType) n :=
  @RingMixin (matrix_zmodType R n.+1 n.+1) 1%:M mulmx
    mulmxA mul1mx mulmx1 mulmxDl mulmxDr matrix_nonzero1.
matrix_ringMixin is defined



Canonical matrix_ringType (R : ringType) n :=
  Eval hnf in RingType 'M[R]_n.+1 (matrix_ringMixin R n).
matrix_ringType is defined



(* Ring notations work on matrices if the *)
(* requirements are met                   *)
Check forall A : 'M[int]_2, A * 1 == 0.
forall A : 'M[int]_2, A * 1 == 0
     : Prop


Fail Check forall A : 'M[int]_(2,3), A * 1 == 0.
The command has indeed failed with message:
=> Error:
   In environment
   A : 'M[int]_(2, 3)
   The term "A" has type
    "'M[int]_(2, 3)"
    while it is expected to have type
    "GRing.Ring.sort ?3632".


Fail Check forall n (A : 'M[int]_n), A * 1 == 0.
The command has indeed failed with message:
=> Error:
   In environment
   n : nat
   A : 'M[int]_n
   The term "A" has type 
   "'M[int]_n"
    while it is expected to have type
    "GRing.Ring.sort ?3633".


Check forall AA : 'M[ 'M[int]_3 ]_2, AA * 1 == AA.
forall AA : 'M['M[int]_3]_2,
AA * 1 == AA
     : Prop



(* ... and the theory too                *)
Lemma testM (A B : 'M[int]_2) :
  A * (B + A) - (A * B + A * A) == 0.
1 subgoals, subgoal 1 (ID 3663)
  
  A : 'M[int]_2
  B : 'M[int]_2
  ============================
   A * (B + A) - (A * B + A * A) == 0


(dependent evars:)


Proof.
1 subgoals, subgoal 1 (ID 3663)
  
  A : 'M[int]_2
  B : 'M[int]_2
  ============================
   A * (B + A) - (A * B + A * A) == 0


(dependent evars:)

by rewrite mulrDr subr_eq0 eqxx.
No more subgoals.

(dependent evars:)

Qed.
testM is defined


This page has been generated by coqdoc